Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/866
Title: Effects of Partial Slip, Viscous Dissipation and Joule Heating on Von Kármán Flow and Heat Transfer of an Electrically Conducting Non-Newtonian Fluid
Authors: Sahoo, B
Keywords: Reiner–Rivlin fluid
MHD flow; Rotating disk
Partial slip
Heat transfer
Viscous dissipation
Joule heating
Finite difference method
Broyden’s method
Issue Date: 2009
Publisher: Elsevier
Citation: Elsevier, Communications in Nonlinear Science and Numerical Simulation, Volume 14, Issue 7, July 2009, Pages 2982-2998
Abstract: The steady Von Kármán flow and heat transfer of an electrically conducting non-Newtonian fluid is extended to the case where the disk surface admits partial slip. The fluid is subjected to an external uniform magnetic field perpendicular to the plane of the disk. The constitutive equation of the non-Newtonian fluid is modeled by that for a Reiner–Rivlin fluid. The momentum equations give rise to highly non-linear boundary value problem. Numerical solutions for the governing non-linear equations are obtained over the entire range of the physical parameters. The effects of slip, magnetic parameter and non-Newtonian fluid characteristics on the velocity and temperature fields are discussed in detail and shown graphically. Emphasis has been laid to study the effects of viscous dissipation and Joule heating on the thermal boundary layer. It is interesting to find that the non-Newtonian cross-viscous parameter has an opposite effect to that of the slip and the magnetic parameter on the velocity and the temperature fields
URI: http://10.1016/j.cnsns.2008.10.021
http://hdl.handle.net/2080/866
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
effects.pdf1.26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.