DSpace@nitr >
National Institue of Technology- Rourkela >
Journal Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/258

Full metadata record

DC FieldValueLanguage
contributor.authorMallick, B-
contributor.authorBehera, R C-
contributor.authorPatel, T-
identifier.citationBulletin of Materials Science, Vol 28, Iss 6, P 593-598en
descriptionCopyright for this article belongs to Indian Academy of Sciencesen
description.abstractMicrostresses developed in the crystallites of polymeric material due to irradiation of high-energy particle causes peak broadening and shifting of X-ray diffraction lines to lower angle. Neutron irradiation significantly changes the material properties by displacement of lattice atoms and the generation of helium and hydrogen by nuclear transmutation. Another important aspect of neutron irradiation is that the fast neutron can produce dense ionization at deep levels in the materials. The polyethylene terephthalate (PET) fibre of raw denier value, 78·2, were irradiated by fast neutron of energy, 4·44 MeV, at different fluences ranging from 1 × 10 9 n/cm2 to 1 × 1012 n/cm2. In the present work, the radiation heating microstresses developed in PET micro-crystallites was investigated applying X'Pert-MPD Philips Analytical X-ray diffractometer and the effects of microstresses in tensile strength of fibre measured by Instron have also been reported. The shift of 0·45 cm-1 in the Raman peak position of 1614·65 cm-1 to a higher value confirmed the development of micro-stresses due to neutron irradiation using micro-Raman technique. The defects due to irradiation were observed by SEM micrographs of single fibre for virgin and all irradiated samples.en
format.extent231354 bytes-
publisherIndian Academy of Sciencesen
subjectneutron fluencesen
subjectmicro-Raman technique.en
titleAnalysis of microstress in neutron irradiated polyester fibre by X-ray diffraction techniqueen
Appears in Collections:Journal Articles

Files in This Item:

File Description SizeFormat
rcb-bms-2005.pdf225KbAdobe PDFView/Open

Show simple item record

All items in DSpace are protected by copyright, with all rights reserved.


Powered by DSpace Feedback