DSpace@nitr >
National Institue of Technology- Rourkela >
Journal Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/1119

Full metadata record

DC FieldValueLanguage
contributor.authorBhowmik, B-
contributor.authorPonnusamy, S-
contributor.authorWirths, K J-
date.accessioned2010-01-01T04:38:57Z-
date.available2010-01-01T04:38:57Z-
date.issued2009-
identifier.citationJournal of Monatsh Math, (post print)en
identifier.urihttp://dx.doi.org/10.1007/s00605-009-0146-7-
identifier.urihttp://hdl.handle.net/2080/1119-
description.abstractLet Co(®) denote the class of concave univalent functions in the unit disk D. Each function f 2 Co(®) maps the unit disk D onto the complement of an unbounded convex set. In this paper we ¯nd the exact disk of variability for the functional (1¡jzj2) (f00(z)=f0(z)), f 2 Co(®). In particular, this gives sharp upper and lower estimates for the pre-Schwarzian norm of concave univalent functions. Next we obtain the set of variability of the functional (1 ¡ jzj2) (f00(z)=f0(z)),f 2 Co(®) whenever f00(0) is ¯xed. We also give a characterization for concave functions in terms of Hadamard convolution. In addition to sharp coe±cient inequalities, we prove that functions in Co(®) belong to the Hp space for p < 1=®.en
format.extent240173 bytes-
format.mimetypeapplication/pdf-
language.isoen-
publisherSpringeren
titleCharacterization and the Pre-Schwarzian Norm Estimate for Concave Univalent Functionsen
typeArticleen
Appears in Collections:Journal Articles

Files in This Item:

File Description SizeFormat
bhowmik.pdf234KbAdobe PDFView/Open

Show simple item record

All items in DSpace are protected by copyright, with all rights reserved.

 

Powered by DSpace Feedback