Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/783
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSamantaray, S R-
dc.contributor.authorDash, P K-
dc.contributor.authorPanda, G-
dc.date.accessioned2009-02-28T08:31:18Z-
dc.date.available2009-02-28T08:31:18Z-
dc.date.issued2005-
dc.identifier.citationAnnual IEEE INDICON, 2005, 11-13 Dec. 2005 Chennai P 162 - 166en
dc.identifier.urihttp://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1590146&isnumber=33509-
dc.identifier.urihttp://hdl.handle.net/2080/783-
dc.descriptionCopyright for the paper belongs to IEEEen
dc.description.abstractA new approach for fault detection in power system network using time-frequency analysis is presented in this paper. The S-transform with complex window is used for generating frequency contours(S-contours), which distinguishes the faulted condition from no-fault. Here the fault current data for one cycle back and one cycle from the fault inception is processed through S-transform to generate time-frequency patterns with varying window. The generated time-frequency patterns clearly distinguishes the faulted condition from un-faulted.en
dc.format.extent1967264 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherIEEEen
dc.subjectFault detectionen
dc.subjectS-contoursen
dc.subjecttime-frequency analysisen
dc.titleFault Classification and Ground detection using Support Vector Machineen
dc.typeArticleen
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
srs9.pdf1.92 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.