Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/655
Title: Parametric Optimization Erosion Wear of Polyester-GF-Alumina Hybrid Composites using the Taguchi Method
Authors: Patnaik, A
Satapathy, Alok
Mahapatra, S S
Dash, R R
Keywords: polymer matrix composites
Wear
Taguchi Method
micro structure
Issue Date: 2008
Publisher: Sage
Citation: Journal of Reinforced Plastics and Composites, (Accepted Postprint)
Abstract: The improved performance of polymer-based hybrid composites in tribological applications has recently been a subject of considerable interest. A hybrid composite consists of the matrix reinforced with both fibers and particulate fillers. Alumina has the potential to be used as filler in such a multi-component system. This article investigates the effect of alumina filling on the erosion wear performance of glass fiber-reinforced polyester composites. For this purpose, an air jet type erosion test configuration and the design of experiment approach utilizing Taguchi's orthogonal arrays are used. Taguchi's design eliminates the need for repeated experiments; thus saving time, materials, and cost. The systematic experimentation leads to identifying significant factors and their interactions that predominantly influence the erosion wear. Pure glass-polyester composite without filler shows greater erosion rate whereas a significant improvement in the erosion resistance is observed with alumina fillers. This may be due to restriction of fiber-matrix debonding. The morphologies of the eroded surface are examined by a scanning electron microscope. Finally, optimal factor settings for minimum wear rate have been determined using genetic algorithm.
Description: Copyright for the published version belongs to Sage
URI: http://dx.doi.org/10.1177/0731684407086867
http://hdl.handle.net/2080/655
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
ssm-jrpc-feb-2008.pdf343.08 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.