Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/5542
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVerma, Amar Pal-
dc.contributor.authorPandey, Ambesh Kumar-
dc.contributor.authorKar, Rasmita-
dc.date.accessioned2026-01-05T05:04:51Z-
dc.date.available2026-01-05T05:04:51Z-
dc.date.issued2025-12-
dc.identifier.citation40th Annual Conference of the Ramanujan Mathematical Society (RMS), IIIT, Delhi, 18-20 December 2025en_US
dc.identifier.urihttp://hdl.handle.net/2080/5542-
dc.descriptionCopyright belongs to the proceeding publisher.en_US
dc.description.abstractThis work addresses the following Robin boundary value problem: -div(b(y)|∇w|^(p(y)-2)∇w) = λF(y) |w|^(η(y)-2) w+G(y) |w|^(γ(y)-2) w in Ω, b(y)|∇w|^(p(y)-2) ∂w/∂ϑ+ H(y) |w|^(p(y)-2) w=0 on ∂Ω, where Ω ⊂ R^N (N ≥2) is a bounded domain, λ>0,H ∈C(∂Ω) and F, G ∈C(Ω ̅) are non-negative weight functions which has compact support in Ω. The function b(y) ∈ C^(0,δ)(Ω ̅) ∩ L^∞ (Ω ̅) is a positive. In addition, the functions p(y), η(y), γ(y) ∈C(Ω ̅)satisfy some appropriate conditions. We establish the existence and multiplicity of weak solutions to the considered problem in generalized Sobolev spaces W^(1,p(y) ) (Ω) by employing the Nehari manifold method.en_US
dc.subjectQuasilinear elliptic PDEsen_US
dc.subjectNehari manifolden_US
dc.subjectp(y)−Laplacianen_US
dc.subjectGeneralized Sobolev spaceen_US
dc.titlePositive Solutions To Quasilinear p(y )−Laplacian Equation With Robin Boundary Conditionen_US
dc.typePresentationen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
2025_RMS_APVerma_Positive.pdfPoster484.04 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.