Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/4726
Title: Wavelet Technique for Time Delay Fractional Optimal Control Problems
Authors: Singh, Akanksha
Kanaujiya, Ankur
Mohapatra, Jugal
Keywords: Optimal control problem
Time delay
Fractional Chelyshkov wavelets
Fractional operational matrix
Product operational matrix
Issue Date: Oct-2024
Citation: 4th International Conference on Nonlinear Applied Analysis and Optimization(ICNAAO), NIT Hamirpur, India, 17-19 October, 2024
Abstract: This article presents an efficient method for finding the numerical solution to time delay fractional optimal control problems using the fractional Chelyshkov wavelet. Here we have used fractional derivative CD µ t in Caputo sense. With the help of Riemann Liouville fractional operational matrices and collocation points, the time delay optimal control problem is reduced into a system of algebraic equations. The Lagrange multiplier technique solves these equations and obtains the optimized value. At last, to demonstrate the high precision of the numerical method, we examine several examples.
Description: Copyright belongs to proceeding publisher
URI: http://hdl.handle.net/2080/4726
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
2024_ICNAAO_ASingh_Wavelet.pdfPresentation420.44 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.