Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/4723
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmadsaidulu, Shaik-
dc.contributor.authorKanase, Akash Suresh-
dc.contributor.authorJain, Puneet Kumar-
dc.contributor.authorBanoth, Earu-
dc.date.accessioned2024-11-03T11:30:39Z-
dc.date.available2024-11-03T11:30:39Z-
dc.date.issued2024-09-
dc.identifier.citationFrontiers in Optics and Laser Science Conference (FiO LS-2024), Colorado Convention Center, Denver, Colorado, USA, 22–26 September 2024en_US
dc.identifier.urihttp://hdl.handle.net/2080/4723-
dc.descriptionCopyright belongs to proceeding publisheren_US
dc.description.abstractIn this work a deep-learning model using enhanced YOLOv8(You Only Look Once) for classifying Acute Lymphoblastic Leukemia (ALL) and other normal cells. Achieving 98% accuracy for ALL and 91% for combined (ALL & Normal) classification enhances clinical decision-making.en_US
dc.subjectDeep Learningen_US
dc.subjectAcute Lymphoblastic Leukemiaen_US
dc.titleA Novel Deep Learning Framework for Enhanced Acute Lymphoblastic Leukemia Detectionen_US
dc.typePresentationen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
2024_FiOLS_SAhmadsaidulu_ANovel.pdfPoster578.4 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.