Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/4651
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoyal, Pramod-
dc.contributor.authorTarai, Sangeeta-
dc.contributor.authorMaiti, Subrata-
dc.contributor.authorChongder, Prasun-
dc.date.accessioned2024-08-14T07:20:51Z-
dc.date.available2024-08-14T07:20:51Z-
dc.date.issued2024-07-
dc.identifier.citationIEEE SPace, Aerospace and defenCE (SPACE), Bangalore, India, 22-23 July 2024en_US
dc.identifier.urihttp://hdl.handle.net/2080/4651-
dc.descriptionCopyright belongs to proceeding publisheren_US
dc.description.abstractLandmines pose a significant challenge to military operations and civilian safety. Traditional Ground-Penetrating Radar (GPR) systems struggle to identify contemporary plastic landmines due to their low reflectivity and similarity to benign objects. This research pioneers the integration of You Only Look Once version 8 (YOLOv8) object classification algorithm with GPR B-scan images, demonstrating notable advancements in subsurface object classification accuracy. By enhancing landmine detection, this study aims to bolster the safety and operational efficiency of the Indian Army in mine-contaminated terrainsen_US
dc.subjectGround-Penetrating Radaren_US
dc.subjectYOLOv8en_US
dc.subjectLandmine Detectionen_US
dc.subjectObject Classificationen_US
dc.subjectMachine Learning,en_US
dc.subjectgprMaxen_US
dc.titleClassification of Ground penetrating radar data using YOLOv8 Modelen_US
dc.typeArticleen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
2024_SPACE_PGoyal_Classification.pdf1.13 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.