Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/4626
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumari, Rupali-
dc.contributor.authorKar, Rasmita-
dc.date.accessioned2024-07-24T10:41:25Z-
dc.date.available2024-07-24T10:41:25Z-
dc.date.issued2024-07-
dc.identifier.citation2nd International Conference on Recent Advances in Applied Mathematics(RAAM), IIT BHU, 3-5 July 2024en_US
dc.identifier.urihttp://hdl.handle.net/2080/4626-
dc.descriptionCopyright belongs to proceeding publisheren_US
dc.description.abstractWe prove the existence of solutions for the nonlinear partial differential equation -div(ω|∇v|^((p-2) ) ∇v)-div(ω|∇v|^((q-2) ) ∇v)= f_λ (v), v>0 in Ω v=0 on ∂Ω, where, Ω⊆R^n is a smooth bounded domain, n≥3,λ>0,1<q<p<∞ and ω belongs to the Muckenhoupt class. When f_λ=λg(v)v^(-ρ), we use variational method to show the existence of a solution. When f_λ (v)=λv^(-ρ)+v^r, existence of atleast two solutions have been proved using the method of approximation.en_US
dc.subjectSingular nonlinearityen_US
dc.subjectp,q-Laplace equationen_US
dc.subjectVariational method.en_US
dc.titleA Study of The Weighted (p,q)-Laplace Equationen_US
dc.typePresentationen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
2024_RAAM_RKumari_AStudy.pdfPresentation685.45 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.