Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/4622
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKesarwani, Akanksha-
dc.contributor.authorKar, Rasmita-
dc.date.accessioned2024-07-24T10:35:43Z-
dc.date.available2024-07-24T10:35:43Z-
dc.date.issued2024-07-
dc.identifier.citation2nd International Conference on Recent Advances in Applied Mathematics(RAAM), IIT BHU, 3-5 July 2024en_US
dc.identifier.urihttp://hdl.handle.net/2080/4622-
dc.descriptionCopyright belongs to proceeding publisheren_US
dc.description.abstractWe study the following nonlinear elliptic problem involving the (p(y), q(y))- Laplacian operator: −div(a(y)|∇v| p(y)−2∇v) + b(y)|v| p(y)−2 v − div(|∇v| q(y)−2∇v) = g(y, v) y ∈ Ω, v = 0 on ∂Ω, where Ω ⊂ R n is a smooth bounded domain, 1 < q(y) < p(y) < n. The functions a, b ∈ L∞(Ω) and a(y) ≥ a0 > 0, b(y) ≥ b0 > 0 for all y ∈ Ω. We prove the existence of weak solutions in W1,p(y) 0 (Ω) for the superlinear case g(y, v) = h(y)v β(y) , p(y) − 1 < β(y) < p∗ (y) − 1, and sublinear case g(y, v) = f(y)v α(y) , 0 ≤ α(y) < q(y) < p(y) − 1, by using the Mountain Pass Theorem.en_US
dc.subjectQuasilinear elliptic equationsen_US
dc.subject(p(y)en_US
dc.subjectq(y))-Laplacian problemen_US
dc.subjectWeak solutions.en_US
dc.titleSuperlinear and Sublinear Dirichlet problem with the (p(y), q(y))-Laplacian operatoren_US
dc.typePresentationen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
2024_RAAM_RKumari_AStudy.pdfPresentation671.13 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.