Please use this identifier to cite or link to this item:
http://hdl.handle.net/2080/4622Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kesarwani, Akanksha | - |
| dc.contributor.author | Kar, Rasmita | - |
| dc.date.accessioned | 2024-07-24T10:35:43Z | - |
| dc.date.available | 2024-07-24T10:35:43Z | - |
| dc.date.issued | 2024-07 | - |
| dc.identifier.citation | 2nd International Conference on Recent Advances in Applied Mathematics(RAAM), IIT BHU, 3-5 July 2024 | en_US |
| dc.identifier.uri | http://hdl.handle.net/2080/4622 | - |
| dc.description | Copyright belongs to proceeding publisher | en_US |
| dc.description.abstract | We study the following nonlinear elliptic problem involving the (p(y), q(y))- Laplacian operator: −div(a(y)|∇v| p(y)−2∇v) + b(y)|v| p(y)−2 v − div(|∇v| q(y)−2∇v) = g(y, v) y ∈ Ω, v = 0 on ∂Ω, where Ω ⊂ R n is a smooth bounded domain, 1 < q(y) < p(y) < n. The functions a, b ∈ L∞(Ω) and a(y) ≥ a0 > 0, b(y) ≥ b0 > 0 for all y ∈ Ω. We prove the existence of weak solutions in W1,p(y) 0 (Ω) for the superlinear case g(y, v) = h(y)v β(y) , p(y) − 1 < β(y) < p∗ (y) − 1, and sublinear case g(y, v) = f(y)v α(y) , 0 ≤ α(y) < q(y) < p(y) − 1, by using the Mountain Pass Theorem. | en_US |
| dc.subject | Quasilinear elliptic equations | en_US |
| dc.subject | (p(y) | en_US |
| dc.subject | q(y))-Laplacian problem | en_US |
| dc.subject | Weak solutions. | en_US |
| dc.title | Superlinear and Sublinear Dirichlet problem with the (p(y), q(y))-Laplacian operator | en_US |
| dc.type | Presentation | en_US |
| Appears in Collections: | Conference Papers | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2024_RAAM_RKumari_AStudy.pdf | Presentation | 671.13 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
