Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/4060
Title: Physics- Informed Neural Network and Experimental Investigations for Analysing Adsorption Kinetics of Desiccant Coated Energy Exchanger Under Tropical Climatic Conditions
Authors: Priyadarshi, Gaurav
Tejes, P.K.S.
Naik, B. Kiran
Keywords: Desiccant coated energy exchanger
Physics-informed neural networks
Adsorption capacity
Silica gel
Water uptake capability
Issue Date: Aug-2023
Citation: 26th International Congress of Refrigeration, Paris, 21-25 August 2023
Abstract: To improve the energy exchange abilities, and to enhance indoor air quality, desiccant coated energy exchanger (DCEE) is a capable substitute compared to conventional energy exchangers such as fixed beds and desiccant wheels. Thus, in the present study, a novel data-driven modelling methodology utilizing physics-informed neural networks (PINNs) is developed to predict the exit parameters of DCEE during adsorption. The performance characteristics of DCEE are evaluated using PINNs by considering different input and design parameters. Good agreement is obtained between the PINN and experimental results for both the steady-state and transient cases, proving the PINN method's capability in solving multiple physics-based PDEs on a single domain with maximum discrepancy of ±7.8%. The SEM results concluded that a uniform coating is formed on the fin tube. Further, the water vapor adsorption isotherm is evaluated. The experimental analysis of the adsorption kinetics of silica gel shows that the water uptake capability is about 0.35 g.g-1 .
Description: Copyright belongs to proceeding publisher
URI: http://hdl.handle.net/2080/4060
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
2023_ICR_GPriyadarshini_Physics.pdf934.79 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.