Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/3648
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNandi, Nupur-
dc.contributor.authorPadhan, Rudra Narayan-
dc.contributor.authorPati, Kishor Chandra-
dc.date.accessioned2022-03-29T11:19:32Z-
dc.date.available2022-03-29T11:19:32Z-
dc.date.issued2022-03-
dc.identifier.citation2nd International Conference on Applied Mathematics in Science and Engineering (AMSE-2022), Bhubaneswar, India, 24-26 March 2022en_US
dc.identifier.urihttp://hdl.handle.net/2080/3648-
dc.descriptionCopyright belongs to proceeding publisheren_US
dc.description.abstractHom-Lie superalgebras can be considered as the deformation of Lie super algebras; which are Z2 -graded generalization of Hom-Lie algebras. The motivation of this paper is to introduce the concept of isoclinism and factor set in regular Hom-Lie superalgebras. Moreover, we obtain that, two finite same dimensional regular Hom-Lie superalgebras are isoclinic if and only if they are isomorphicen_US
dc.subjectHom-Lie superalgebraen_US
dc.subjectIsoclinismen_US
dc.subjectFactor seten_US
dc.titleIsoclinism and Factor Set in Regular Hom-Lie Superalgebrasen_US
dc.typePresentationen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
2022_AMSE_NNandi_Isoclinism.pdf501.17 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.