Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/3587
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJha, Sangita-
dc.contributor.authorVerma, Saurabh-
dc.date.accessioned2021-11-01T11:12:39Z-
dc.date.available2021-11-01T11:12:39Z-
dc.date.issued2021-10-
dc.identifier.citationFall Western Sectional Meeting, AMS Sectional Meeting, Virtual Meeting on , Albuquerque, New Mexico, 23-24October 2021en_US
dc.identifier.urihttp://hdl.handle.net/2080/3587-
dc.descriptionCopyright of this paper is with proceedings publisheren_US
dc.description.abstractThe fractal interpolation functions with appropriate iterated function systems (IFSs) provide a method to perturb and approximate a continuous function on a compact interval I. This method produces a class of functions f α ∈ C(I), where α is a scale parameter. As essential parameters of the IFS, the scaling factors have important consequences in the properties of the function f α. Also, the interpolant or a certain derivative of it may have a non-integer box-counting dimension depending on the scaling factors magnitude. In this talk, we discuss an exact estimation of box dimension of α-fractal functions under suitable hypotheses on IFSs.en_US
dc.subjectFractal interpolation functionsen_US
dc.subjectiterated function systemsen_US
dc.titleA note on fractal dimension for a class of fractal interpolation functionsen_US
dc.typePresentationen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
AMS-Meeting_SJha_2021_note.pdfPresentation245.07 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.