Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/3093
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChattopadhyay, Sourav-
dc.contributor.authorNandy, Anup-
dc.date.accessioned2018-11-09T07:10:19Z-
dc.date.available2018-11-09T07:10:19Z-
dc.date.issued2018-10-
dc.identifier.citationIEEE TENCON (2018), Jeju, Korea, 28 – 31 October, 2018en_US
dc.identifier.urihttp://hdl.handle.net/2080/3093-
dc.descriptionCopyright of this document belongs to proceedings publisher.en_US
dc.description.abstractThis paper presents a novel approach to human gait analysis using wearable Inertial Measurement Unit(IMU) sensor-based technique.The proposed system emphasizes on detection of certain abnormal gait patterns. It includes hemiplegic and equinus gait which are synthetically generated in our lab.The designed prototype contains an IMU sensor with 3 axial accelerometer and gyroscope. It provides linear accelerationandangularvelocityofhumanfoot. Aprobabilistic framework,Hidden Markov Model(HMM) is applied to model bipedal human gait.This model uses Symbolic Aggregate Approximation(SAX) method for generating observation sequences obtained from sample gait cycles.The detection of abnormal gait pattern is based on maximum log-likelihood of an unknown observerd sequence,generated from a gait cycle.The experimental results demonstarte that the proposed HMM-based technique is able to detect gait abnormality in gait data.The proposed personalized gait modelling approach iscosteffectiveandreliabletoimplementingaitrehabilatation process.en_US
dc.subjectIMU sensoren_US
dc.subjectHuman gaiten_US
dc.subjectAccelerometeren_US
dc.subjectGyroscopeen_US
dc.subjectHMMen_US
dc.subjectWearable sensoren_US
dc.subjectAbnormal gaiten_US
dc.titleHuman gait modelling using hidden markov model for abnormality detectionen_US
dc.typeArticleen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
2018_TENCON _ANandy_HumanGait.pdfConference paper3.49 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.