Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/3027
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPattanaik, Suvendu Ranjan-
dc.contributor.authorPradhan, Dillip Kumar-
dc.date.accessioned2018-07-24T10:10:49Z-
dc.date.available2018-07-24T10:10:49Z-
dc.date.issued2018-07-
dc.identifier.citation10th Asian Conference on Fixed Point Theory and Optimization (ACFPTO-2018), Chiang Mia, Thiland,16-18 July,2018en_US
dc.identifier.urihttp://hdl.handle.net/2080/3027-
dc.descriptionCopyright of this document belongs to proceedings publisher.en_US
dc.description.abstractHere, assuming Brezis, Crandall and Pazy constraint qualification conditions, we prove that the closure of sum of an ultra maximal monotone operator and an operator of type (D) is maximal monotone operator in Banach spaces which satisfy Grothendieck and weakly compactly generated properties.en_US
dc.subjectMaximal monotone operatoren_US
dc.subjectMonotone operator of type (D)en_US
dc.subjectUltramaximal monotoneen_US
dc.subjectMoreau-Yosida regularizationen_US
dc.titleSum of Ultra Maximal Monotone Operators and Operators of Type (D) in Grothendieck Spacesen_US
dc.typePresentationen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
2018_ACFPTO_SPattnaik_Sum of Ultra.pdfPresentation172.29 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.