Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/2867
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJena, Adarsha Kumar-
dc.contributor.authorTripathy, Manas Ranjan-
dc.date.accessioned2018-01-09T04:56:32Z-
dc.date.available2018-01-09T04:56:32Z-
dc.date.issued2017-12-
dc.identifier.citationIASSL International Conference 2017, Colombo, Sri Lanka, 28-29 December, 2017en_US
dc.identifier.urihttp://hdl.handle.net/2080/2867-
dc.descriptionCopyright of this document belongs to proceedings publisheren_US
dc.description.abstractThe problem of component wise estimation of quantiles of two shifted exponential populations has been considered under type-II censored samples when the location parameters assume certain ordering. When there is no order restriction on the location parameters, estimators like maximum likelihood estimator (MLE), modified maximum likelihood estimator (MMLE), uniformly minimum variance unbiased estimator (UMVUE) and best affine equivariant estimator (BAEE) have been found. Incorporating the ordered restriction on the location parameters, isotonic estimators of the BAEE and the mixed estimators have been obtained. Further, using prior information of ordered location parameters, certain Bayes estimators have been obtained. All the proposed estimators have been compared using Monte-Carlo simulation technique. Finally conclusions have been made regarding the use of the estimators.en_US
dc.subjectBayes estimatoren_US
dc.subjectBest affine equivariant estimator (BAEE)en_US
dc.subjectEstimation of quantilesen_US
dc.subjectModifed maximum likelihood estimator (MMLE)en_US
dc.subjectMixed estimatoren_US
dc.subjectOrder Restrictionen_US
dc.subjectType-II censoringen_US
dc.subjectUniformly minimum variance unbiased estimator (UMVUE)en_US
dc.titleEstimating Quantiles of Two Exponential Populations under Ordered Location Using Censored Samplesen_US
dc.typePresentationen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
2017_IASSL_MRTripathy_Estimating.pdfPresentation571.19 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.