Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/2340
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDamarla, S K-
dc.contributor.authorKundu, M-
dc.date.accessioned2015-07-16T03:44:25Z-
dc.date.available2015-07-16T03:44:25Z-
dc.date.issued2015-
dc.identifier.citationJournal of Fractional Calculus and Applications, 6(2), 31-52en_US
dc.identifier.issn2090-5858-
dc.identifier.urihttp://hdl.handle.net/2080/2340-
dc.description.abstractThis article introduces a new application of piecewise linear orthogonal triangular functions to solve fractional order differential-algebraic equations. The generalized triangular function operational matrices for approximating Riemann-Liouville fractional order integral in the triangular function (TF) domain are derived. Error analysis is carried out to estimate the upper bound of absolute error between the exact Riemann-Liouville fractional order integral and its TF approximation. Using the proposed generalized operational matrices, linear and nonlinear fractional order differential-algebraic equations are solved. The results show that the TF estimate of Riemann-Liouville fractional order integral is accurate and effective.en_US
dc.language.isoenen_US
dc.publisherJournal of Fractional Calculus and Applicationsen_US
dc.subjectNumerical Solutionen_US
dc.subjectAlgebraic Equaltionen_US
dc.subjectOperation Metricsen_US
dc.subjectTriangular Functionen_US
dc.titleNumerical Solution of Fractional Order Differential-Algebraic Equations Using Generalized Triangular Function Operational Matricesen_US
dc.typeArticleen_US
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
JFCA_6_2_31- 52_2015.pdf429.03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.