Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/2217
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShakti, D-
dc.contributor.authorMohapatra, J-
dc.date.accessioned2014-12-18T03:23:19Z-
dc.date.available2014-12-18T03:23:19Z-
dc.date.issued2014-11-
dc.identifier.citationNational conference on Analysis and Applied Mathematics, Dept of Mathematics, NIT Trichy , Nov 27-28 2014.en_US
dc.identifier.urihttp://hdl.handle.net/2080/2217-
dc.descriptionCopyright belongs to proceeding publisheren_US
dc.description.abstractA quasilinear first order singularly perturbed boundary value problem depending on a parameter is considered. The problem is solved by a backward Euler fnitediference operator on an appropriate non-uniform mesh constructed adaptively by equidistributing a monitor function based on the solution. An error bound in the maximum norm is established theoretically whose error constants are shown to be independent of the singular perturbation parameter. The method is first-order convergent. Numerical experiment illustrates in practice the result of convergence proved theoretically.en_US
dc.language.isoenen_US
dc.subjectSingular perturbationen_US
dc.subjectParameterized problemen_US
dc.subjectBoundary layeren_US
dc.subjectAdaptive meshen_US
dc.subjectUniform convergenceen_US
dc.titleAdaptive Grid for Parameterized Singular Perturbation Problemen_US
dc.typeArticleen_US
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
JM-NIT-Trichy.pdf178.31 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.