Please use this identifier to cite or link to this item: http://hdl.handle.net/2080/1677
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSekhar, T. Raja-
dc.date.accessioned2012-04-12T09:25:56Z-
dc.date.available2012-04-12T09:25:56Z-
dc.date.issued2012-03-
dc.identifier.citationInternational Conference on Fluid Dynamics and Thermodynamics Technologies (FDTT 2012), Singapore, March 17-18, 2012.en
dc.identifier.urihttp://hdl.handle.net/2080/1677-
dc.descriptionCopyright belongs to proceeding publisheren
dc.description.abstractInfinitesimal transformations: Consider a one-parameter Lie group of transformations x = X(x; ) with identity  = 0 and law of composition . If we expand x = X(x; ) about  = 0 we get x = x + ( @X @ )=0 + 2 2 ( @2X @2 )=0 + · · · x = x + ( @X @ )=0 + O(2) = x + (x) where (x) = ( @X @ )=0. This is called infinitesimal transformation of x = X(x; ) and the components of (x) are called infinitesimals of x = X(x; ).en
dc.format.extent121937 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.subjectInfinitesimal generatoren
dc.subjectPower-series methoden
dc.titleSelf similar solutions in shallow water equationsen
dc.typePresentationen
Appears in Collections:Conference Papers

Files in This Item:
File Description SizeFormat 
Rajappt.pdf119.08 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.