Please use this identifier to cite or link to this item:
http://hdl.handle.net/2080/1677
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sekhar, T. Raja | - |
dc.date.accessioned | 2012-04-12T09:25:56Z | - |
dc.date.available | 2012-04-12T09:25:56Z | - |
dc.date.issued | 2012-03 | - |
dc.identifier.citation | International Conference on Fluid Dynamics and Thermodynamics Technologies (FDTT 2012), Singapore, March 17-18, 2012. | en |
dc.identifier.uri | http://hdl.handle.net/2080/1677 | - |
dc.description | Copyright belongs to proceeding publisher | en |
dc.description.abstract | Infinitesimal transformations: Consider a one-parameter Lie group of transformations x = X(x; ) with identity = 0 and law of composition . If we expand x = X(x; ) about = 0 we get x = x + ( @X @ )=0 + 2 2 ( @2X @2 )=0 + · · · x = x + ( @X @ )=0 + O(2) = x + (x) where (x) = ( @X @ )=0. This is called infinitesimal transformation of x = X(x; ) and the components of (x) are called infinitesimals of x = X(x; ). | en |
dc.format.extent | 121937 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | - |
dc.subject | Infinitesimal generator | en |
dc.subject | Power-series method | en |
dc.title | Self similar solutions in shallow water equations | en |
dc.type | Presentation | en |
Appears in Collections: | Conference Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Rajappt.pdf | 119.08 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.