Please use this identifier to cite or link to this item:
http://hdl.handle.net/2080/1155
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Subudhi, B | - |
dc.contributor.author | Jena, D | - |
dc.date.accessioned | 2010-01-22T09:42:29Z | - |
dc.date.available | 2010-01-22T09:42:29Z | - |
dc.date.issued | 2009 | - |
dc.identifier.citation | IEEE Journal of Intelligent Cybernetic Systems, Issue 1, March 2009, pages:1-13 | en |
dc.identifier.uri | http://hdl.handle.net/2080/1155 | - |
dc.description.abstract | The slow convergence and local minima problems associated with neural networks (NN) used for non-linear system identification have been resolved by evolutionary techniques such as differential evolution (DE) combined with Levenberg Marquardt (LM) algorithm. In this work the authors attempted further to employ an opposition based learning in DE, known as opposition based differential evolution (OBDE) for training neural networks in order to achieve better convergence of DE. The proposed OBDE together with DE and neuro-fuzzy (NF) approaches to non-linear system identification has been applied for identification of two non-linear system benchmark problems. Results presented clearly demonstrate that the OBDE-NN method of non-linear system identification provides excellent identification performance in comparison to both the DE and NF approaches. | en |
dc.format.extent | 1439635 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | - |
dc.publisher | IEEE | en |
dc.subject | Back Propagation, | en |
dc.subject | Differential evolution, | en |
dc.subject | Evolutionary computation, | en |
dc.subject | Nonlinear System Identification, | en |
dc.subject | Neuro-fuzzy, | en |
dc.subject | Opposition based differential evolution | en |
dc.title | Nonlinear System Identification using Opposition Based Learning Differential Evolution and Neural Network Techniques | en |
dc.type | Article | en |
Appears in Collections: | Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ICS2009Vol1Subudhi.pdf | 1.41 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.