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Abstract. Let M = {f(z) = (z™/sinh™ z) for z € C| either m or m/2 is an odd natural
number}. For each f € M, the set of singularities of the inverse function of f is an
unbounded subset of the real line R. In this paper, the iteration of functions in one-
parameter family S ={f,(z) = Af(z) | » € R\ {0}} is investigated for each f e M. It
is shown that, for each f € M, there is a critical parameter 1* > 0 depending on f such
that a period-doubling bifurcation occurs in the dynamics of functions fj in S when the
parameter |A| passes through A*. The non-existence of Baker domains and wandering
domains in the Fatou set of f is proved. Further, it is shown that the Fatou set of f; is
infinitely connected for O < |A| < A* whereas for |A| > A*, the Fatou set of f consists of
infinitely many components and each component is simply connected.

1. Introduction

Let f:C— C=Cu {oo} be a non-constant transcendental meromorphic function. The
set of points z € C for which the sequence of iterates { f"(z)}>, is defined and forms a
normal family is called the Fatou set of f and is denoted by F(f). The Julia set, denoted
by J(f), is the complement of the Fatou set of f in C. Tt is well known that the Fatou set
is open and the Julia set is a perfect set. Let sing( £ ~!) denote the set of finite singularities
of the inverse function f~! of the function f (also called singular values of f). Then,
sing(f~1) is the set of critical and finite asymptotic values of f and finite limit points of
these values. Denote by sing(f ~7) the set of finite singularities of the inverse function of

fP. Let Ax(f) = {z € C| f¥ is not analytic at z} and define

p—1 00
Sp(H) = freing(f D\ A(f) and P(f) = Sp(). )
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It is easy to see that sing(f ") € S,(f) € Sp41(f) and the set P(f) consists of the
forward orbits of all points in sing(f~!) as long as they are defined and finite. Let B
denote the class of all meromorphic functions f for which sing(f~!) is a bounded set.

The existence of Baker domains and wandering domains is one of the important
dynamical aspects of transcendental meromorphic functions and has been investigated
[1, 5, 6, 8, 15, 16, 18, 20, 23]. Rippon and Stallard proved the non-existence of Baker
domains with period p in the Fatou set of transcendental meromorphic functions f
for which the set S,(f) is bounded [19]. Non-existence of wandering domains for
meromorphic functions f of finite type (i.e., f for which sing(f~!) is a finite set) is
established by Baker et al [3]. A number of one-parameter families of meromorphic
functions of finite type are investigated by Keen and Kotus [9], Keen et al [14], Jiang [13]
and Prasad et al [11]. Zheng [22, 23] investigated the relations between P(f) and the
limit functions of iterates {f"},~0 in a Fatou component and proved the non-existence
of Baker domains and wandering domains for certain meromorphic functions in the
class B. However, the dynamics of meromorphic functions outside the class B is largely
unexplored.

Let

Zm

sinh™ z

/\/l:{f(z)z

for z € C | m or m/2 is an odd natural number}.

For each f € M, consider the one-parameter family of functions

S={fi@=1f() |+ e R\ {0}}.

In this paper, the iteration of functions f; in the one-parameter family S is investigated.

Observe that f)(z) is an even function. If L € R\ {0} then f)(z) = —f-1(—2z) and
fi(2)=—f",(=z) for z € C and n € N. It shows that the functions fi and f_; are
conformally conjugate and the dynamics of f) and f_, are essentially same. Therefore,
we prove the results on the dynamics of the functions f; € S for A > 0.

In §2, it is mainly shown that sing( fk_l) is an unbounded subset of the real line. The
dynamics of f) (x) for x € R is investigated in §3. We show that there is a critical parameter
A* > 0 (depending on f) such that a period-doubling bifurcation occurs in the dynamics
of functions f; in & when the parameter |A| passes through A*. In §4, the dynamics of
Jfo(2) for z € Cis studied. The non-existence of Baker domains and wandering domains in
the Fatou set of f; is also proved. There is a change in topology of the Fatou components
effectuated by the above mentioned bifurcation which is described in §5.

2. Properties of fi

The function f; (z) = A(z™ /sinh™ z) is meromorphic with poles at {iwk | k € Z \ {0}}. All
the poles are multiple if m > 1 and simple if m = 1. Further, the function f)(z) is even and
not periodic. In Proposition 2.1, we prove that the Julia set of f is symmetric with respect
to both the real and imaginary axes. The point z = 0 is an omitted value of f; and hence an
asymptotic value of fj(z). More importantly, it is shown that sing( f)\_l) is an unbounded
subset of the real line in Proposition 2.2.

PROPOSITION 2.1. Let f; € S. If z € T (f)) then —z € T (f3) and 7 € T (f5.).
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Proof. Let z € J(f.). Since fi(—z) = fi(z) for all z € C and J(f;) is completely
invariant, —z € J(f). Observe that f; (z) = f3(z) and consequently, f;'(z) = f}'(z) for
all z € Cand n € N. For z € J(f3), the sequence { f},,~¢ is not normal at z. It follows that
{f_f},,>o is also not normal at z. Therefore, { f}'},-0 is not normal atz andz € J(f3). O

PROPOSITION 2.2. Let f5 € S. Then, the set of all the critical values of f) is an
unbounded subset of R\ (—|A|, |A]) and 0 is the only finite asymptotic value of f;.

Proof. Observe that

m—1

fi@)=xr

m—1 inh 7z — h
me {sm LT Leos Z} and me #0 forzeC.

sinh” 1 7 sinh? 7 sinh” 1 7

Further, the point z = 0 is the only common zero of sinh z — z cosh z and sinh® z and is
a zero of (sinh z — z cosh z)/ sinh? 7. Therefore, the solutions of f1(z) = 0 are precisely
the solutions of sinh z — z cosh z = 0 i.e., the solutions of tanh z = z. It is easy to see that
the set of all the solutions of tanh z = z is an unbounded subset of the imaginary axis. If
tanh(iy) =iy for some y € R then tanh(—iy) = —tanh(iy) = —iy. Therefore, the set of
all the critical points of f3(z) is symmetric with respect to the origin and is an unbounded
subset of the imaginary axis. Let {iyx }x~0 be the sequence of critical points in the positive
imaginary axis arranged in the increasing order of their moduli. Then —iyy is also a critical
point of f; (z) for each k. Since f; (z) is an even function,

l-mym
lim ivi)| = lim —iy)| = lim A—% | = 0.
,Hoolfx(yk)l ,Hoolfx( vl Jm P s o

Therefore, the set of all the critical values of f; is unbounded. Every critical point iy
of f, (z) satisfies tanh(iyx) = iyx and consequently,
N/ 1
sinh(iyy) ~ cosh(iyg)’

The critical value

fx(iyk)=?»(#) =x<;,> =x( ! )
sinh(iyg) cosh(iyx) oS Yk

is real. Since |cos y| < 1 for all y € R, it follows that | 5 (iyx)| = |A|. Therefore, the set of
all the critical values of f (z) is an unbounded subset of R \ (—|A|, |A]).

In order to determine the asymptotic values of f;, first we find all the asymptotic values
of (sinh z/z). All the critical points of (sinh z/z), i.e., the roots of (z cosh z — sinh 2)/%
are purely imaginary and form an unbounded set. Since

. sinh iy . sin y
lim - = lim =
[y|>o0 1y lyl>o00 y

’

0 is an asymptotic value of (sinh z/z) and is the only limit point of all the critical values of
(sinh z/z). Since the order of (sinh z/z) is one, it can have at most two finite asymptotic
values. Further, if there are exactly two finite asymptotic values of (sinh z/z) then both the
asymptotic values are indirect singularities of the inverse function of (sinh z/z) [17]. If f is
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a meromorphic function of finite order and a is an asymptotic value of f then, a is a limit
point of critical values a; # a or all singularities of f~! are logarithmic (a special case
of direct singularity) [7]. Therefore, if there is a finite asymptotic value w of (sinh z/z)
other than 0 then both 0 and @ are indirect singularities of inverse function of (sinh z/z)
and the limit points of critical values of (sinh z/z). Since the critical values of (sinh z/z)
accumulate only at 0, W can not be an asymptotic value of (sinh z/z). Thus, O is the only
finite asymptotic value of (sinh z/z). Since (sinh z/z) is an entire function, oo is also an
asymptotic value. It implies that the function (z/sinh z) has only one finite asymptotic
value, namely 0. Hence, O is the only finite asymptotic value of f;(z) = A(z"™/sinh™ z)
form e N. O

Remark 2.1. Forz=x +1iy #0,

) T
|sinh z|™ sinh? x + sin” y .

If y : [0, c0) — C is a path for which {J(z) | z € ¥} is bounded and lim;—, » |NR(y (¢))| =
oo then limy—, o fo(y (¢)) = 0. Further, if y is a path for which {)(z) | z € y} is bounded
and lim;—, o [I(y (7))| = oo then lim; . f5.(y (1)) = o0.

Zm

sinh™ z

3. Dynamics of f(x) forx e R
In this section, the dynamics of f; (x) for x € R is studied. In Theorem 3.1, the existence
and nature of real fixed points of f) are explored. The change in the nature and existence
of real periodic points leads to a bifurcation in the dynamics of f; (x) for x € R at a critical
parameter value and is proved in Theorem 3.2.

Consider the function

mxm—l ) m
¢(X) = xf/(x) + f(x) ZXM(SIDI]X — X COShX) + m
m
= %H()((m + 1) sinh x — mx coshx) forx > 0.
sin X

Let p(x) = (m + 1) sinh x — mx cosh x. Then p’(x) = cosh x — mx sinh x and
p”(x) = (1 — m) sinh x — mx cosh x.

Observe that p”(x) <0 for x e RT" ={x e R|x >0}, since m > 1. Therefore, the
function p’(x) is decreasing on R*. Since p’(0) =1 and lim,_, ;o p'(x) = —00, by
continuity of p’(x), it follows that there is a unique x > 0 such that p’(x) > 0 for
0<x<zx, pP(x)=0 and p’(x) <0 for x > x. Therefore, p(x) increases in [0, X),
attains its maximum at X and decreases thereafter. It follows from the facts p(0) =0
and limy_, 1 o, p(x) = —o0 that, there is a unique positive x* > x such that p(x) > 0 for
0<x <x* p(x*)=0and p(x) <0 for x > x*. Since (x"/sinh”*! x) > 0 for all x > 0,
it follows that

>0 for0<x <x™,
p(x){=0 forx=ux*, 2

<0 forx > x*.

m

¢(x) =

sinh™*!
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Define
X *

R

where x* is the unique positive real root of the equation ¢ (x) = xf'(x) + f(x) =0.

A*(m) = A* 3

Remark 3.1. For the function f(x) = (x™/sinh™ x), let x*(m) denote the positive real root
of the equation ¢ (x) = xf’(x) + f(x) =0 and let

x*(m)
J(x*(m))
denote the corresponding critical parameter. For m =1, 2 and 3, it is numerically
computed that x*(1) ~ 1.915, x*(2) ~ 1.2878, x*(3) ~ 1.034 02 and A*(1) ~ 3.3198,
A*(2) &~ 2.1772, A*(3) =~ 1.7926.

A(m) =

The following theorem shows that f; has a unique real fixed point for each A > 0.
However, the nature of the fixed point changes when the parameter A passes through the
critical parameter A*.

THEOREM 3.1. Let f; €S and A > 0. Then, the function f) has a unique real fixed
point x,. Furthermore, the following cases hold.

(1)  The fixed point x,_is attracting for 0 < A < A*.

(2)  The fixed point x,,_ is rationally indifferent for A = A*.

(3)  The fixed point x,,_is repelling for . > \*.

Proof. Since f)(x) > 0 for all x € R, each real periodic point of fj is positive. The

function
m—1

fix) = )»_m;:TH(sinhx —xcoshx) <0 forx>0
sin X

and hence f5(x) is decreasing on RT. Let gy(x) = fi(x) —x for x e R. Since
f{(x) <0forx >0, g} (x) = f{(x) — 1 <0 and consequently, g, (x) is decreasing on R".
Now, g,(0) =1 >0, limy;_, ;o g1(x) = —00 and g, (x) is continuous on RT. By the
intermediate-value theorem, there exists a unique positive x; such that g;(x;) =0. In
other words, f(x) has a unique positive fixed point x; and A = (x; /f (x,)). Note that the
function (x/f(x)) is increasing on RT, since

d( x \_ f@)-—xf'(x
E(f(x))_ >0 forx>0.

(f (x))?
(1) For 0 <A <XA*, (xn/f(xn)) < (x*/f(x*)) which gives x; < x*. By equation (2),
¢ (x5) > 0. This implies that

P) _ xf'(x) + f(x)
fx) fx)

Since f (x) is negative on R™, it follows that —1 < f1(x3) <0 and the fixed point
X, is attracting for 0 < A < A*.

(2) For A =A%, it follows that x) = x™ and ¢ (x)) =0 by arguments similar to those
used in case (1). Now, by equation (2), it follows that (¢ (x;)/f (x;)) = 0 implying
fix(x2) = —1. Therefore, the fixed point x; = x* is rationally indifferent if 1 = A*.

= fi(x)+1>0.
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(3) For A > A*, it follows that x; > x™* by arguments similar to those used in case (1).
Again by equation (2) and by the fact x; > x*, we have ¢(x;) <0. It shows
that (¢ (x)/f(x2)) = f,(x3) + 1 <0 and hence f;(x;) < —1. Therefore, x; is a
repelling fixed point of f; for A > A*. |

Now, we investigate the possibility of the real periodic points of f;, with minimal
period greater than one. The function f;(x) is decreasing on R*, £, (R) = (0, A] and
f». has a unique real fixed point x, by Theorem 3.1. It is easy to see that f3(0) =
A> fr(x) >x; for 0 <x <x) and fi(x) <x) < £5.(0)=A for x > x; > 0. In other
words, f3((0, x3)) = (x5, ) and f3 (x;, 00) = (0, x»). It follows that f;'(x) # x for any
x € RT\ {x5} and odd n. Therefore, f5(x) does not have any real periodic point of odd
period other than x,. Observe that fj(x) > 0 and f}:(x) <0 for x>0 and A >0. So
(ff)’(x) = fi(fa(x)) f;(x) > 0 and ff(x) is increasing on R*. Consequently, if ff(x) >
x (or f2(x) < x) for some x € R* then £2"(x) > f2" (x) (or f2*(x) < f7" P (x))
for all n. It shows that the function ff (x) does not have any real periodic points of period
greater than one, and hence f (x) has no real periodic point of even period greater than
two. Therefore, a real periodic point of fj other than x; is of minimal period exactly
equal to two, if it exists. Also, each cycle {x1,, x2,} of real 2-periodic points satisfies
X1) < X < x2). Let us assume that f has two different 2-periodic real cycles {a, b} with
0 <a <band {c, d} with 0 < ¢ < d. Since f(x) is strictly decreasing on R for A > 0,
it follows that c <a <x), <b <d ora <c < x) <d < b. In the first case {c, d} and in
the second case {a, b} is called the outer cycle. In the first case {a, b} and in the second
case {c, d} is called the inner cycle. The following proposition shows that whenever such
a 2-periodic cycle exists, it is attracting or rationally indifferent and all the singular values
of f,(z) tend to this cycle under iteration of ff.

PROPOSITION 3.1. Let f,, €S and . >0. If fo has a real 2-periodic cycle, then
limy— o0 f2"(X) = y1a or you for all x €0, yi31U [y2:, +00) where {y1;, y2.} is the
outermost 2-periodic cycle. In particular, the cycle {y1), ya.} is either attracting or
rationally indifferent and all the singular values of f, tend to {y1, y2.} under iteration

of f~.

Proof. 1t is observed earlier that any periodic point of the function f; is of minimal period
one or two and each 2-periodic cycle {a, b} satisfies a < x; < b where x; is the fixed point
of fi. Since {y1,, y2.} is the outermost 2-periodic cycle, ff(x) # x for all x > yp. If
possible, let ff(x) > x for some x > y»,. Then, the sequence { ff" (x)}n>0 is increasing
and bounded above by A, and hence ff” (x) converges to [, say. Obviously, ! > y»,. By the
continuity of ff it follows that the point / must be a periodic point of f; of period at most
two. This contradicts the fact that {y;,, y2,} is the outermost 2-periodic cycle. Therefore,
we conclude that ff(x) < x for all x > y;,. Since ff(x) is increasing, the sequence
{ ff” (x)},>0 is decreasing and bounded below by y,; and consequently, lim;,_, ff” x) =
y2), for x > y7,. Similarly, it can be proved that ff (x) > x and lim,,_, ff" (x) =y for
all 0 < x < yq;. Therefore, lim;,—, oo ff”(x) = yqp or y, forall x € [0, y1;]U [yan, +00).

Each interval containing y;; contains points tending to y; under iteration of ff.
Therefore, y;; cannot be a repelling periodic point of ff and is either attracting or
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rationally indifferent. Thus, {y1;, y2,} is either attracting or rationally indifferent. As
(=y25., yan) C (—A, A) and f; is an even function, lim,_ ff"(x) = y15 or yp, for all
x € R\ (=X, A). Since all the critical values of f; are in R\ (—A, A) and the finite
asymptotic value O is mapped to A by f3, it is concluded that all the singular values of f;
tend to {y1,, y21} under iteration of ff. O

The dynamics of f, (x) for x € R is determined in the following theorem.

THEOREM 3.2. Let f;, € S and 1 > 0.

() If A <A™ then lim,_, o f}'(x) =ay for all x e R where a; is the unique real
attracting fixed point of f.

(2) If A=A" then lim,_,« f;'(x) =x* for all x e R where x* is the unique real
rationally indifferent fixed point of f.

(3) If A > A* then lim,_, ff" (x) = ayy or apy, for all x e R\ {r;, —r)} where r), is
the unique real repelling fixed point of f, and {a1), as)} is the real attracting or
rationally indifferent 2-periodic cycle.

Proof. All the singular values of f, (z) are in (R \ (—A, 1)) U {0} by Proposition 2.2. If
there is a 2-periodic cycle then the cycle is in (0, 1) and by Proposition 3.1, all the singular
values tend to the outermost 2-cycle under iteration of ff.

(1) Let ff(x) > x (or f/\z(x) < x) for some x > 0. Since f/\z(x) is increasing on R™, the
sequence { ff" (x)}n>0 is increasing and bounded above by A (or decreasing and bounded
below by 0). Therefore, ff” (x) converges to x, say. Now, by continuity of f3, the point X
is a periodic point of fj(x) of period one or two. If possible, let x be a periodic point
of f) with prime period two. Then, there is an outermost 2-periodic cycle of f; and all the
singular values of f; tend to the outermost 2-periodic cycle under iteration of ff whichis a
contradiction to the fact that the basin of attraction of a; must contain at least one singular
value of fj. Therefore, X is not a 2-periodic point and is a fixed point. Since f; has only
one real fixed point a; for 0 < A < A*, x =a; and lim,_, o ff"(x) =ay for all x e RT.
By continuity of f;, it follows that lim,,_, o f}'(x) = a, forall x € RT. Since

A@®RTUO) CRT,  lim f'(x)=a; forallx eR.
n—oo

(2) Let ff(x) > x (or ff(x) < x). Since ff(x) is increasing on R*, the sequence
{ ff" (x)}n>0 is increasing and bounded above by A (or decreasing and bounded below
by 0). Proceeding as in case (1), it is easy to see that { ff" (x)}n=0 converges to x™* for all
x € RT. By continuity of f3, it follows that lim,_, o f;'(x) = x* for all x € RT. Since

fHLRTU{0) CRT, lim. f(x)=x* forallx € R,

(3) If A > A*, then the unique real fixed point of f, is repelling. Therefore, we
can find a real number x sufficiently close to the fixed point r; such that ff(x) > X.
Since ff(x) is increasing on RT, the sequence { ff” (x)}n>0 is increasing and bounded
above by A. Therefore, { ff” (x)}u>0 converges to X, say. By continuity of f)?, it follows
that X is a 2-periodic point of f;. If possible, let there be more than one 2-periodic
cycle of periodic points. If {ij;, i2x} is the innermost real cycle of 2-periodic points
of fA then i <1y <iop and, f;\(x) € (I")L, llz)h) for all x € (i])“ r;L) and f)L(X) € (l'])\, r;L)
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for all x € (ry, i)). Furthermore, the sequence { ff” (x)}n>0 converges either to iy
or to ip, for x € (i1, i2n) \ r» by the same arguments as used in the previous cases.
Therefore, {i1,, i)} is either an attracting or a rationally indifferent cycle and at least
one singular value of f; tends to this cycle under iteration of ff. But all the singular
values of ff tend to the outermost 2-cycle under iteration of f; by Proposition 3.1 leading
to a contradiction. Hence, fj has exactly one 2-periodic cycle. Let it be {aj,, az.}.
By Proposition 3.1, lim,_ ff”(x) =ay) or ap, for all x € [0, ajx]U [ay;, +00). If
x € (r;, ap], then ff (x) > x and lim,,_, o ff" (x) = apy.. Similarly, it is easily seen that
lim,,— oo ff" (x) = aqy forall x € [ag;, ). Since f;(z) is an even function, it follows that
lim,, s 00 ff" (x) = ayy or apy, forall x € R™ \ {—r,}. Therefore, if A > A* it is concluded
that lim,, _, o ff” (x) = ayy or ayy, forall x e R\ {ry, —ry} where r;, is the repelling fixed
point of f; and {ay,, az,} is the attracting or rationally indifferent 2-periodic cycle. a

The above theorem exhibits the occurrence of a period-doubling bifurcation at A = A*
in the dynamics of functions f; in the one-parameter family S.

Remark 3.2. All the singular values of f;,, A > 0 are in R and tend to either an attracting
or a rationally indifferent periodic point under iteration of ff. Therefore, the set P(f3)
is contained in the Fatou set of fj for A > 0. In particular, the point 0 is in the Fatou set
F(f») for A > 0.

Remark 3.3. Note that f; (iy) = (y"/sin”y) and the image of any point on the imaginary
axis is either infinity or a real number. By Theorem 3.2, each of the real numbers except at
most two are in an attracting or a parabolic domain of f; corresponding to a real periodic
point. Therefore, any Fatou component U of f; other than an attracting or parabolic
domain (and their pre-images) intersects neither the real nor the imaginary axis. Thus,
such a Fatou component U is contained completely in one of the four quadrants of the
complex plane.

4. Dynamics of f,(z) forz € C

The dynamics of f;(z) for z € C is studied in this section. The non-existence of Baker
domains and wandering domains in the Fatou set of f, € S for A >0 is proved in
Theorem 4.1 and Theorem 4.2 respectively. The dynamics of f;(z) for z € C is described
in Theorem 4.3.

THEOREM 4.1. Let f, € S and . > 0. Then, the Fatou set of f, has no Baker domain.

Proof. Suppose, on the contrary that the Fatou set of fj has a Baker domain B of minimal
period p. All the singular values of fj are real by Proposition 2.2 and f; (R) = (0, A].
Therefore, S, ( f5.) is bounded for each p > 1 and the Fatou set of f; cannot have a Baker
domain of minimal period greater than one [19]. Therefore, p =1. That is, B is an
invariant Baker domain. By the definition of an invariant Baker domain, there is a point z*
in the boundary of B such that lim,_,, f;'(z) = z* forall z € B and f;(z*) is not defined.
Since the point at infinity is the only point in C where the function fi(z) is not defined,
Z* =00. Now, lim,_, o f}'(z) =00 and f;'(z) € B for z € B and n € N gives that the
domain B is unbounded. Since f3(z) = fy.(z) for all z € C and B is contained in one of
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the four quadrants by Remark 3.3, B = {7 € C | z € B} is also an invariant Baker domain
of f;. Clearly, one of B and B contains points with positive imaginary parts. Let it be B,
i.e., J(z) > 0foreach z € B.

We assert that the set {J(z) | z € B} is unbounded. To see it, suppose on the contrary
that {J(z) | z € B} is bounded. Then {N(z) | z € B} must be unbounded as B is itself
unbounded. Now, let {zx }x~0 be a sequence in B such that limy_, o, [N (zx)| = co. Then

A2mzyl

—(eZk T —0 ask— o0

fulz) =
by Remark 2.1. The point O is in the attracting or parabolic domain for each A > 0 by
Remark 3.2. Let N(0) be a neighbourhood of z =0 completely lying in the Fatou set.
Then, there is a natural number & such that f(zk) € N(O) for all k > k. Consequently, zx
is in a Fatou component U such that f3(U) is contained in an attracting domain or a
parabolic domain and hence, not in B for k > k. Tt contradicts the invariance of B. Thus
the set {J(z) | z € B} is unbounded.

Let B be in the first quadrant of the plane. If B is in the second quadrant, the
proof follows similarly. For 6 € (0, (7/2)), let So ={z € C|6 < Arg(z) < w/2} and
So ={z€C|0< Arg(z) <6} where 0 < Arg(z) <2m. Let Ly ={z€C|J(z) =k}
and L,:“ ={ze€ Ly |N(z) >0} for k € Z. We now show that the set {J(z) |z€ BN Sy}
is unbounded for each 6 € (0, w/2). In view of the conclusion obtained in the previous
paragraph, it is sufficient to prove that the set {J(z) | z € B N Sy} is bounded. Suppose
the set {J(z) | z € B N Sy} is unbounded for some 6. Then a sequence {s,},~0 of points
can be found in B N Sy’ such that J(s,) < (tan )N (s,) for all n € N and J(s,) — oo as
n — oo. Consequently, 9i(s,) — oo and

[Nsp) +i3Csn)| _, [(1 + tan O)R(sp)|
=SNG0 _ o NGen) = 7T gNGw) _ o NGsn)

Sn

- — 0 asn— oo.
sinh(s;,)

It follows that there is an ng € N such that f; (s,) € N(0) for n > ng. Consequently, the
set {s, | n > ng} is not in the Baker domain, which is a contradiction. Therefore, the
set {J(z) | z € BN Sy} is bounded, and hence the set {J(z) | z € B N Sp} is unbounded.
Furthermore, B N Sy has an unbounded connected subset. In particular, there exists an
integer ko such that the set B N Sy intersects L,‘: for all kK > kg. Choose 6 in such a way
that for all 8, B € (0, 7 /2), [m(8 — B)| < (;t/4) where f; (z) = A(z™ /sinh™ z).

Case 1. m is odd.

Note that
S
(x + imk)™ — % for odd k,
Ll +imk)=h— = e )
sinh™ (x + imk) (x +imk)™
A— for even k.
sinh™ x

Let zi =x1 +ink,z2=x+in(k+1) e BN Sy for some k>ky. If Arg(z;) =06,
and Arg(z2) = 63 then 6y, 6> € (6, 7/2) and |Arg(z]") — Arg(z5)| = |m(61 — 62)| < /4.
Therefore, the two points z|' and z' belong either to the same quadrant or to two
consecutive quadrants. This means either the real parts or the imaginary parts of z}'
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and z3' have same sign. Let the first possibility hold i.e., (M(z]")/M(z5)) > 0. One of
k and k + 1 is even and the other is odd. Also note that (A/sinh™ x) > 0 for x > 0. Using
equation (4), we have R(f1(z1))/NR(fi(z2)) < 0. In other words, R( f3(z1)) and R( fi(z2))
have opposite sign. Thus f,(B) = B intersects the imaginary axis which contradicts
Remark 3.3. For 3(z/")/3(z) > 0, arguing similarly, we can get 3(f1(21))/I(fa(22)) <
0, which also results in a similar contradiction to Remark 3.3.

Case 2. m/2is odd.
Note that

sinh” (x ti (% n 2nk>> — —cosh”x fork e N,

Since the line

T
L/2)tonk = {z eC|3(z) = 5 + an}

intersects B N Sy for all sufficiently large k, there is an even k' € N such that the points
z3=x3+i((w/2) + 27k’) and z4 = x4 +i(2k’) are in BN Sy for some x3, x4 >0
where 6 is so chosen that |Arg(z5') — Arg(zy')| < /4. Now,

(x3 +i((t/2) + 27k ))™ (X4 + i27k’)"

filzz3) =—X and  fi(z4) =2

Arguing exactly in the same manner as in Case 1, it is found that either
N(fr(23) S3(f2.(23)
——— <0 or ——— <0

R(fi(z4)) 3(fr(z4))
Both of these possibilities contradict Remark 3.3.

cosh” x3 sinh” x4

Therefore, the Fatou set of f, does not contain any Baker domain. O

THEOREM 4.2. Let f; €S and L > 0. Then, the Fatou set of f) has no wandering
domain.

Proof. By Remark 3.2, the set P(f3) \ {oo} is in the Fatou set of f,. Since oo is in
the derived set P(f;)" of P(f;), we have J(f5) N P(f;) = {oo}. If a point zq is in a
wandering domain of fj then, every limit point of {f}"(z0)}n>0 is infinity [22]. Since
S$>(f) is bounded, ff"(zg) does not tend to infinity as n — oo. Then, we can find
a subsequence {ng}i~o of {2n},~0 such that { ff ¥(z0)}k>0 is bounded. Let us consider
{ff"}bo. Since { f;'}n>0 is normal at zg, there is a subsequence {f;"'m tmso of {f)f”‘}bo
such that lim,,;_ f; km(z0) = co. However, it is not possible because {ng u}m=0 is a
subsequence of {ny}x~o. Therefore, the Fatou set of f, does not contain any wandering
domain. O

THEOREM 4.3. Let f; € S and ). > 0.

(1)  For & < A*, the Fatou set F(f5) of f» is the basin of attraction of the unique real
attracting fixed point a;, of f.

(2)  For ». = A*, the Fatou set F(f3) of fi is the parabolic basin corresponding to the
unique real rationally indifferent fixed point x* of f;.

(3)  For A > \*, the Fatou set F(f3) of fu is the basin of attraction or parabolic basin
corresponding to a cycle of real 2-periodic points {ay,,, a.} of fa
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Proof. We know that the boundary of any rotational domain of a meromorphic function f
is contained in the closure of the set P(f) [4]. Thus, the Fatou set of f; does not contain
any rotational domain. By Theorems 4.1 and 4.2, the Fatou set of f; also does not contain
any Baker domain and wandering domain for A > 0.

If U is an attracting domain or parabolic domain of period p and z,, is the corresponding
attracting or rationally indifferent periodic point of f;, then there is a singular value s of f;
such that f;"” (£} (s)) — zu asn — oo for some k, 0 < k < p. Since all the singular values
and their forward orbits (whenever defined) are in R, z,, is real. Therefore, any attracting
or parabolic domain of fj corresponds to a real attracting or rationally indifferent periodic
point.

(1) For0 < A < A*, fy has only one real periodic point which is the attracting fixed point
a,. Therefore, F( f5.) is the basin of attraction of a;,.

(2) For A =A%, f, has only one real periodic point which is the rationally indifferent
fixed point x*. Therefore, F( f3) is the parabolic basin corresponding to x*.

(3) For A > A*, f; has a repelling fixed point r; and a cycle of real 2-periodic points
{a1, a2, } which is either attracting or rationally indifferent. Therefore, F(f)) is the
attracting basin or parabolic basin corresponding to {aj;, az;}. O

Since fj and f_, are conformally conjugate, the dynamics of f; for A < 0 is as follows.

COROLLARY 4.1. Let f,, € Sand A < 0.

(1)  For —A* < A <0, the Fatou set F () of f> is the basin of attraction of the unique
real attracting fixed point of f.

(2)  For A = —\*, the Fatou set F(f3) of f. is the parabolic basin corresponding to the
unique real rationally indifferent fixed point of f.

(3) For A < —\%, the Fatou set F(f>.) of fu is the basin of attraction or parabolic basin
corresponding to a cycle of real 2-periodic points of f.

5. Topology of Fatou components

Topology of the Fatou components of f;, A > 0 is investigated in this section. It is observed
from Theorem 4.3 that the Fatou set of f; contains components with period one and two.
The connectivity of a periodic Fatou component of a meromorphic function is either one,
two or infinity whereas the connectivity of a pre-periodic Fatou component can be any
finite number [2]. In Theorem 5.1, it is proved that the Fatou set of fi,0 <A <A™ is
infinitely connected. The existence of pre-periodic Fatou components is established and
the connectivity of all the Fatou components of f; is determined for A > A* in Theorem 5.2.

THEOREM 5.1. Let f; € S and 0 < A < A*. Then, the Fatou set F(f,.) of f is connected.
Furthermore, the Fatou set F(f3) is infinitely connected.

Proof. By Theorem 3.2(1), lim, .« f;'(x) = a; for x e Rand 0 < A < A* where a, is the
attracting fixed point of fj. The Fatou set of f; is the attracting basin

A(a)) ={zeC| fi'(z) > apasn — oo} for0 <A <A™
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Let I(a)) be the immediate basin of attraction of a,. By definition, I (a;) is a forward
invariant connected subset of the Fatou set F(f;). Note that A(ay) = I(a,) if 1(ay) is
backward invariant. Since [ (a,) is connected, in order to prove the connectedness of
F(f»), itis sufficient to show that I (a;) is backward invariant.

Let, if possible, V be a component of fk_l(l(ak)) different from 7 (ay). Since O is an
omitted value of f3, each singularity of f[l lying over O is transcendental. It means that V
contains an asymptotic path y corresponding to the asymptotic value 0 and by Remark 2.1,
the set {M(z) | z € ¥} is unbounded. Therefore, the set {f(z) | z € V} is unbounded. The
function f; is even and f;.(Z) = fo.(z) for all z € C. In view of Remark 3.3, it is assumed
without loss of generality that, the set V is in the upper half plane {z € C | J(z) > 0}. Let
{wy}n>0 be a sequence on y such that R(w,) — oo asn — oco. Thenlim, .~ fi(w,) =0.
Each of the vertical lines [, = {z € C | R(z) = N(w,) and 0 < J(z) < J(w,)} joins a point
of V and a point of RN I(ay) and we get that [, intersects the boundary oV of V for
eachn. Letz, €, NdV. Then z, € J(f5) and J(z,,) < I(wy) for all n. Furthermore,

| fi.(z)| = ,\{< R(zn)? + J(zn)? >1/z}m

sinh? R (z,) + sin? I(z,)

2 ) x 2 1/2ym
A{( R(wn)” + I(wp) > } 5)

sinh? R (wy) + sin® I(zn)

Since the sequence {sin®(3(zn))}n=0 is bounded, the right-hand side of equation (5) is
equal to | f5 (wy,)| when n — oo. Therefore, lim,_, o fi(zn) =0. Let D, (0) ={z € C:
|z| <r} C I(a)). Then, there exists an no such that f5(z,) € D,(0) for all n > ngy. It
means that z,, is in the Fatou set of f; for n > ng, which is a contradiction. Therefore, each
component of f[] (I (ay)) intersects I (a;) and hence is a subset of I (ay). Thus I (a)) is
backward invariant.

Since F(f;) is connected and contains an attracting fixed point, it is invariant. The
connectivity of any invariant Fatou component of a meromorphic function is one, two
or infinity, two being the case when the component is an Herman ring. Since the Fatou
set F(f3) is an attracting domain for 0 < A < A*, the connectivity of F(f) is either one or
infinity. If possible, let 7 ( f3) be simply connected. Then, the Julia set 7 (f;) is connected.
As the point at infinity and a pole w* lying on the imaginary axis are in J(f), there is
an unbounded connected subset J,,+ of the Julia set containing w*. Now, —J,+ = {z € C |
—Z € Jy+} is also in the Julia set by Proposition 2.1. Thus J = Jy,« U —J,,« is in the Julia
set and the set C \ J has at least two components each intersecting the Fatou set of f;.
This contradicts the fact that F( f;) is connected. Therefore, F(f;) is infinitely connected
for0 < A < A%, a

Remark 5.1. Since the Fatou set is connected with connectivity greater than three for
0 < A < A*, singleton components of J ( f;) are dense in 7 (f3) [10].

It is seen in Theorem 5.1 that the Fatou set of fj is connected and hence unbounded
for 0 < A < A*. The next proposition shows that there are at least three Fatou components
of f, two of which are unbounded for A > A*.
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PROPOSITION 5.1. Let f; €S and A>M1* If U', U™ and Uy denote the Fatou
components containing (ay), +00), (—o00, —apy) and 0 respectively where {aiy, az.} is
the 2-cycle of real periodic points of fi, then the Fatou components UY, U™ and Uy are
mutually disjoint. Further, the components U™ and U™ are unbounded.

Proof. Observe that both U™ and U~ are mapped into Uy and Uy is mapped into U™
by fi for A > A*. Since Uy and U™ form a cycle of 2-periodic Fatou components,
Uy # UT. If Uy intersects U~ then Uy = U~ will become invariant, which is not true.
Therefore, Uy is different from UT and U~. If UT and U~ are the same component
of F(f;) then UT = U~ intersects the imaginary axis. Then, since all the points in the
imaginary axis are mapped onto R \ (—A, A) C (—o0, —azy) U (a2, +00), the points of
the set U™ N {iy | y € R} are mapped into U™ and consequently, U™ is invariant, leading
to a contradiction. Therefore, Uy, Ut and U~ are mutually disjoint components of F( f3,)
for A > A*. The components U~ and U™ are unbounded by definition. O

THEOREM 5.2. Let f; € S and A > \*. Then, the Fatou set F (f3) of fi. contains infinitely
many pre-periodic components and each component of F( f,)) is simply connected.

Proof. 1t is clear from Theorem 3.2 that the point 0 € F(f;) for all A. Let Uy be the
Fatou component containing 0. If A > A* and {a, a2,} is the 2-cycle of real periodic
points of fj then by Theorem 3.2, (—o0, —a;) and (az,, +00) are in the Fatou set of f;.
Let U™ and U™ be the Fatou components of f; containing (—oo, —azy) and (azy, +00)
respectively. If a pre-image of a point of U™ lies in U~ then U~ N f3 (U ™) # @ which
shows that U~ = f,(U™) since f,(U™) is connected. It means that U~ is forward
invariant. But it is already known that U™ is not forward invariant. Therefore, no pre-
image of any point of U™ lies in U ™. In other words, U™ is not backward invariant. Since
none of Uy and U™ is mapped into U~ by fi, each component of fk_l(U ~) is different
from Uy and U™, and consequently is a pre-periodic Fatou component. Repeating the
same arguments for each component of fx_l (U™) and continuing the process, we can find
infinitely many pre-periodic Fatou components.

Let U be any Fatou component of f;,. Suppose, on the contrary that U is multiply
connected. Let y be a simple closed curve in U such that the bounded component B(y <)
of y¢= C \ y intersects the Julia set J(f3). Set Bj = f){(B(y”)) for j e N. If B(y°)
does not contain a pole of f; then f;(z) is analytic on B(y¢), the closure of B(y°),
and By = fi(B(y°)) is bounded. Further, the function f;(z) maps the interior of B(y©)
(which intersects the Julia set) into the interior of B; and, by the complete invariance
of J(f), it follows that B1 N J(f,) #@. If By does not contain any pole of f; then
consider By = fj(B1) and repeat the above arguments. Since the pre-images of all the
poles of f; are dense in J(f3), B(y®) contains a point w such that f;'(w) is a pole
of f; for a natural number n. Let n* the minimum of all such natural numbers, minimum
being taken over all points in the backward orbit of co which lie in B(y¢). Then, the
set B,+ contains a pole. Since all the poles of f; are on the imaginary axis, the boundary
of B,+ intersects the imaginary axis. Therefore, the set B,+;1| = f)(B,+) contains a
neighbourhood of oo and the unboundedness of U™ and U~ gives that By« intersects
both U™ and U~. Since fi(iy) € R and | f3(iy)| > A for all y € R, the f;-image of d B}
intersects at least one of U or U ~. Note that 0Bj41 C fr(@B)) for j=1,2,3,...,n"
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TABLE 1. Comparison between the dynamics of A tanh(e?) and A(z"" /sinh™ z).

Dynamics of g, (z) = A tanh(e®), A # 0

Dynamics of fj(z) = Az™/sinh™ z, A #0,
where m or m /2 is an odd natural number

g 1s periodic with period 27i.

g, is neither even nor odd.

g» has no critical values.

g, has three (finite) asymptotic values 0, A
and —A.

The set of all singular values of g, is finite.

Bifurcation in the dynamics of g, occurs at
one critical parameter A* ~ —3.2946.

The Fatou set of g, has infinitely many
components and each component is simply
connected for A < A*.

The Fatou set of g, is infinitely connected
for A > A*.

/. is not periodic.

f>. 1s even.

/>, has infinitely many critical values.

/>, has only one (finite) asymptotic value 0.

The set of all singular values of f is
unbounded.

Bifurcation in the dynamics of fj occurs
at two critical parameters £A*(m) whose
values depend on f.

The Fatou set of f; has infinitely many
components and each component is simply
connected for |A| > A*(m).

The Fatou set of f; is infinitely connected
for [A| < A*(m).

Therefore, 0 By« € fH,(0Bpx) S+ - - C ff“rl (y) C F(f,) and consequently, 0 B+ lies
either in U™ or in U~. Since neither U™ nor U~ intersects the imaginary axis, d B+ 1
cannot wind around Up. Now, Uy is a subset of B,y and each singularity of fx_l lying
over 0 is transcendental. This means that B,,= contains an asymptotic path corresponding to
the asymptotic value O which contradicts the boundedness of B,=. Therefore, U is simply
connected. a

Remark 5.2. Theorem 5.2 is true for A = A* and the proof is similar.

The function A(z"/sinh™ z) differs in many fundamental properties from the
meromorphic function A tanh(e?), but these functions exhibit similar bifurcations in their
dynamics. The iteration of X tanh(e?) is studied in [11]. Table 1 provides a comparison
between the dynamical properties of these two functions.
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