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Abstract. In this paper, the dynamics of transcendental meromorphic func-
tions in the one-parameter family

M = {fλ(z) = λ f(z) : f(z) = tanh(ez) for z ∈ C and λ ∈ R \ {0} }

is studied. We prove that there exists a parameter value λ∗ ≈ −3.2946 such
that the Fatou set of fλ(z) is a basin of attraction of a real fixed point for
λ > λ∗ and, is a parabolic basin corresponding to a real fixed point for λ = λ∗.
It is a basin of attraction or a parabolic basin corresponding to a real periodic
point of prime period 2 for λ < λ∗. If λ > λ∗, it is proved that the Fatou
set of fλ is connected and, is infinitely connected. Consequently, the singleton
components are dense in the Julia set of fλ for λ > λ∗. If λ ≤ λ∗, it is proved
that the Fatou set of fλ contains infinitely many pre-periodic components and
each component of the Fatou set of fλ is simply connected. Finally, it is proved
that the Lebesgue measure of the Julia set of fλ for λ ∈ R \ {0} is zero.

1. Introduction. Let f(z) be a transcendental meromorphic function in the com-

plex plane C. Let Ĉ = C ∪ {∞} denote the extended complex plane. The central
objects studied in the dynamics of a complex function f are its Fatou set and Julia
set. The Fatou set of the function f , denoted by F(f), is defined as

F(f) =






z ∈ Ĉ : fn(z) is defined for each n = 0, 1, 2, · · · and {fn}∞n=0

forms a normal family at a neighborhood of the point z
(in the sense of Montel)




 .

Then, the Julia set of f , denoted by J(f), is the complement of the Fatou set of f

in the extended complex plane Ĉ.
The dynamics of transcendental meromorphic functions in the one-parameter

family

M = {fλ(z) = λ f(z) : f(z) = tanh(ez) for z ∈ C and λ ∈ R \ {0} }
is mainly studied in the present paper. The dynamics of the critically finite en-
tire function λez, (λ ∈ C \ {0}) have been extensively studied and a number of
interesting properties of the Julia set of λez are proved [3–5,8, 10, 11, 15, 17, 21–24].
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Devaney and Keen [12–14] studied the dynamics of meromorphic functions with con-
stant/polynomial Schwarzian derivatives and in particular, the dynamics of func-
tions in the one-parameter family {λ tan z : λ ∈ R \ {0} }. Jiang [19], Keen and
Kotus [20] furthered the study of dynamics of the tangent family. It is worth to
note that the dynamics of λ tanh z is essentially same as the dynamics of λ tan(z),
since tanh z and tan z are conformally conjugate.

The real meromorphic function tan z maps the upper half-plane into itself and
it simplifies the determination of the dynamics of λ tanh z, λ ∈ R \ {0}. But, the
mapping properties of the real meromorphic function tanh(ez) are comparatively
more complicated. Further, the function tanh(ez) is a meromorphic function having
non-rational Schwarzian derivative and the Nevanlinna order is infinite. However,
the functions λez and λ tanh z have constant Schwarzian derivatives and finite or-
ders. Even though the order of fλ(z) = λ tanh(ez) is infinite, it has only 3 finite
asymptotic values, namely ±λ and 0. The asymptotic values of ez and tanh z are
logarithmic that are the simplest kind of direct singularities of the respective in-
verse functions. Whereas the asymptotic values ±λ of fλ are logarithmic, and 0 is
the indirect singularity of the inverse function of fλ. Thus, the properties of the
function fλ differ in many ways from that of λez and λ tanh z and that motivates
us to explore the dynamics of fλ.

It is well known that the bifurcation in the dynamics of functions in each of the
families {Tλ(z) = λ tanh z : λ ∈ R \ {0}} and {Eλ(z) = λez : λ ∈ R \ {0}} occur
at two critical parameter values. But, in the dynamics of functions in the family
M, we show that the bifurcation occurs only at one critical parameter. We mainly
prove the following result on the dynamics of fλ in Section 4.

Theorem 1. Let fλ ∈ M. Let λ∗ = −1
f ′(x∗) where x∗ is the unique real root of

x
f(x) + 1

f ′(x) = 0.

1. If λ > λ∗ then the Fatou set F(fλ) is equal to the basin of attraction A(aλ)
where aλ is the attracting real fixed point of fλ.

2. If λ = λ∗ then the Fatou set F(fλ) is equal to the parabolic basin P (x∗) where
x∗ is the rationally neutral real fixed point of fλ.

3. If λ < λ∗ then the Fatou set F(fλ) is equal to the basin of attraction or the
parabolic basin corresponding to the attracting or the parabolic real 2-periodic
cycle {a1λ, a2λ} of fλ.

For the function Tλ(z) = λ tanh z, the Fatou set of Tλ is infinitely connected if
|λ| < 1 and it contains only two simply connected components {z ∈ C : ℜ(z) < 0}
and {z ∈ C : ℜ(z) > 0} if |λ| ≥ 1. For the function Eλ(z) = λez, every component
of the Fatou set of Eλ is simply connected if λ < −e, and the Fatou set of Eλ

itself is simply connected if −e ≤ λ ≤ 1
e
, and is empty if λ > 1

e
. In Section 5, the

topological properties of the Fatou sets of fλ are investigated and the following two
theorems are proved.

Theorem 2. Let fλ ∈ M where λ > λ∗. Then, the Fatou set of fλ is connected
and, is infinitely connected.

Theorem 3. Let fλ ∈ M where λ ≤ λ∗. Then,

1. The Fatou set of fλ contains infinitely many strictly pre-periodic (pre-periodic
but not periodic) components.

2. Every component of the Fatou set is simply connected.
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In Section 6, it is shown that the measure of the Julia set of fλ is zero.

2. General properties of fλ. In this section, we prove some basic results on the
functions fλ ∈ M that are relevant in the study of their dynamics. The function
f(z) = tanh(ez) is periodic of minimal period 2πi and maps the real line R onto
(0, 1). The poles of f(z) are the zeros of cosh(ez), and hence, they satisfy e2ez

=
−1 = eiπ(2k+1) for k ∈ Z. Therefore, the set of poles of f(z) is {z = x + iy ∈ C :
x = ln

∣∣π
2 (2k + 1)

∣∣ and y = π
2 (2l+1) where k ∈ Z and l ∈ Z}. Further, all the poles

are simple and lie in the right half-plane {z ∈ C : ℜ(z) ≥ ln(π
2 )}. One can show

that the Nevanlinna order of the function f(z) = tanh(ez) is infinite.

Lemma 1. Let g be a non-constant critically finite meromorphic function in C

and h be a non-constant critically finite entire function. Let F (z) = g(h(z)) be
the composition function. If a is a finite asymptotic value of F (z) then either a
is an asymptotic value of g or there exists b ∈ C such that g(b) = a and b is an
asymptotic value of h. Consequently, the number of finite asymptotic values of the
composite function F is at most the sum of the number of finite asymptotic values
of the individual functions g and h.

Proof. Let γ : [0, ∞) → C be an asymptotic path corresponding to the asymptotic
value a for the function F (z). Let M denote the collection of all limit points of the
set {h(γ(tk)) : {tk} is any sequence of positive real numbers which tends to ∞ as
k → ∞}. Observe that g(z) = a for every z ∈ M . Since g is a non-constant
meromorphic function, the set M cannot have any limit point in C. Therefore,
M

⋂
C is a discrete subset of C. Now we claim that M contains only one element

in Ĉ. If possible, the set M contains more than one element in Ĉ. Suppose that
m1 and m2 are in M with m1 6= m2. Then, there exist open disks B1(m1) and

B2(m2) such that B1(m1) ∩ M = {m1} and B2(m2) ∩ M = {m2}. The curve
h(γ(t)) intersects the disks B1(m1) and B2(m2) infinitely many times and also the
boundaries C1 = ∂B1(m1) and C2 = ∂B2(m2) of these disks infinitely many times.
Note that, if {h(γ(t)) : t ≥ 0}∩Ci is a finite set S (say), then S

⋂
M 6= ∅ which is

a contradiction to Bi(mi) ∩M = {mi} for i = 1, 2. Suppose that {h(γ(t)) : t ≥
0} ∩ Ci is an infinite set. Then, the intersecting points {h(γ(t)) : t ≥ 0} ∩ Ci will
have a limit point, li (say), since C1 and C2 are compact. This implies that li ∈M

which is a contradiction to Bi(mi) ∩M = {mi} for i = 1, 2. Therefore, M is a

singleton set in Ĉ.
If M = {b} where b ∈ C then a = g(b) and b is an asymptotic value of h(z). If

M = {∞} then a is an asymptotic value of g(z). Therefore, in both the cases, a
corresponds either to an asymptotic value of h or to that of g. This completes the
proof.

The following proposition determines all the singular values of fλ ∈ M.

Proposition 1. Let fλ ∈ M. Then fλ(z) has only three (finite) asymptotic values
and no critical values.

Proof. Since f ′
λ(z) = λ ez sech 2(ez) 6= 0 for any z ∈ C, it follows that fλ(z) has

no critical points and hence, it has no critical values.
Turning to asymptotic values, by Lemma 1, it follows that fλ(z) will have at most

3 finite asymptotic values, since ez has only one finite asymptotic value, namely, 0
and λ tanh(z) has two finite asymptotic values, namely, λ and −λ.



124 M. GURU PREM PRASAD AND TARAKANTA NAYAK

If γ1(t) = −t for t ∈ [0, ∞) then lim
t→∞

fλ(γ1(t)) = 0. If γ2(t) = t for t ∈ [0, ∞)

then lim
t→∞

fλ(γ2(t)) = λ. When γ3(t) = t + iπ for t ∈ [0, ∞), lim
t→∞

fλ(γ3(t)) = −λ.
Therefore, 0 and ±λ are the three finite asymptotic values of fλ(z).

Two meromorphic functions f1, f2 : C → Ĉ are called conformally conjugate if

there is an analytic homeomorphism ψ on Ĉ such that ψ(f1(z)) = f2(ψ(z)) for all

z ∈ Ĉ. If a conformal conjugacy ψ exists between two transcendental meromorphic
functions then the analytic homeomorphic map ψ(z) will be of the form ψ(z) = az+b
where a and b are complex constants with a 6= 0. In the following, we show that
no two functions fλ1

and fλ2
in M are conformally conjugate. Suppose that there

exists an analytic homeomorphism ψ(z) = az+b for all z ∈ Ĉ between two functions
fλ1

and fλ2
in M with λ1 6= λ2. In the proof of Proposition 1, it is shown that the

function fλi
has three finite asymptotic values, namely, 0, λi and −λi. Note that

±λi are the exceptional values of fλi
. Now, the conjugacy map ψ is required to

take the set {λ1, −λ1} to {λ2, −λ2}. That is, either ψ(λ1) = λ2, ψ(−λ1) = −λ2

or ψ(λ1) = −λ2, ψ(−λ1) = λ2. It implies that b = 0 and afλ1
(z) = fλ2

(az) for all
z ∈ C. Therefore, it follows that af ′

λ1
(0) = af ′

λ2
(0) and λ1 = λ2 which is not true.

Define φ : R → R by φ(x) = x
f(x) + 1

f ′(x) . Rewriting it,

φ(x) =
xf ′(x) + f(x)

f(x)f ′(x)
=

1

4ex tanh(ex)
(4xex + e2ex − e−2ex

) .

Letting φ1(x) = 4xex + e2ex − e−2ex

, we observe that φ′1(x) = 2ex(2x+ 2 + e2ex

+
e−2ex

) = 2exφ2(x), where φ2(x) = 2x + 2 + e2ex

+ e−2ex

. The function φ′2(x) =
2 + 2ex(e2ex − e−2ex

) > 0 for x < 0. This implies that φ2(x) is strictly increasing
for x < 0. Since φ2(x) → −∞ as x → −∞ and φ2(x) → 2 + e2 + e−2 > 0 as
x → 0, there exists a point x2 < 0 such that φ2(x) < 0 for x < x2, φ2(x2) = 0
and φ2(x) > 0 for x2 < x < 0 and consequently, φ′1(x) < 0 for x < x2, φ

′
1(x2) = 0

and φ′1(x) > 0 for x2 < x < 0. Therefore, φ1(x) is decreasing for x < x2 and, is
increasing for x2 < x < 0. This shows that the function φ1(x) attains the minimum
value at the point x2 and the minimum value φ1(x2) is negative, because φ1(x) → 0
as x → −∞. Since φ1(x) → e2 − e−2 > 0 as x → 0, there exists a unique point
x∗ with x2 < x∗ < 0 such that φ1(x) < 0 for x < x∗, φ1(x) = 0 for x = x∗ and
φ1(x) > 0 for x∗ < x < 0; and consequently, φ(x) < 0 for x < x∗, φ(x) = 0 for
x = x∗ and φ(x) > 0 for x∗ < x < 0. Observe that φ(x) > 0 for x ≥ 0.

Define

λ∗ =
x∗

f(x∗)
=

−1

f ′(x∗)
(1)

where x∗ is the unique real root of the equation φ(x) = x
f(x) +

1
f ′(x) = 0. Numerically

it is found that x∗ ≈ −1.0789 and λ∗ ≈ −3.2946.

3. Real periodic points. In this section, the real periodic points of fλ ∈ M are
investigated. In Proposition 2, it is proved that fλ cannot have a real periodic point
of prime period more than two. The existence and nature of the real fixed points
is proved in Proposition 3. The existence and nature of the real periodic points of
prime period 2 is analyzed in Proposition 4.

Proposition 2. Let fλ ∈ M. Then, fλ has no real periodic point of prime period
more than two.
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Proof. Let gλ(x) = fλ(fλ(x)) for x ∈ R. Then, the function gλ(x) is strictly
increasing on R, since g′λ(x) = λf ′(λf(x))λf ′(x) > 0 for all x ∈ R. Suppose there
exists a point x0 such that x0 is a real periodic point of prime period p = 2 for gλ.
Since gλ(x0) 6= x0, either gλ(x0) > x0 or gλ(x0) < x0. If gλ(x0) > x0, it implies

that gk
λ(x0) > gk−1

λ (x0) for all k > 1. It makes gk
λ(x0) > x0 for every k ∈ N which

is a contradiction to the fact that gp
λ(x0) = x0. A similar contradiction can well be

realized by assuming gλ(x0) < x0. Therefore, gλ(x) has no real periodic point of
prime period p = 2. Since gλ(x) cannot have a real periodic point of prime period 2,
it follows that the function fλ(x) cannot have a real periodic point of prime period
4. Since fλ is a continuous real valued function and not possessing a real periodic
point of prime period 4 on R, by Sarkovskii’s theorem ( [9], Page 62), we conclude
that fλ(x) cannot have a real periodic point of prime period more than two.

The function f(x) = tanh(ex) is positive for all x ∈ R. Since f ′(x) = ex sech 2(ex)
> 0 for all x ∈ R, the function f(x) is strictly increasing on R. It is easy to see
that f(x) → 0 as x → −∞ and f(x) → 1 as x → +∞. Now, we find the nature
of the function f ′′(x) = ex sech 2(ex)(1 − 2ex tanh(ex)) on R. Observe that the
function d

dx
(1 − 2ex tanh(ex)) = −2ex(ex sech 2(ex) + tanh(ex)) < 0 for all x ∈ R.

Therefore, the function ψ(x) = 1 − 2ex tanh(ex) is strictly decreasing on R. Since

lim
x→−∞

1 − 2ex tanh(ex) = 1 and lim
x→0

1 − 2ex tanh(ex) = 1 − 2
e2 − 1

e2 + 1
=

3 − e2

e2 + 1
< 0,

it follows that there exists a point x̂ < 0 such that ψ(x) > 0 for x < x̂, ψ(x) = 0
for x = x̂ and ψ(x) < 0 for x > x̂. Consequently f ′′(x) = ex sech 2(ex)(1 −
2ex tanh(ex)) > 0 for x < x̂, f ′′(x) = 0 for x = x̂ and f ′′(x) < 0 for x > x̂. This
shows that the function f ′(x) increases in the interval (−∞, x̂), decreases in the
interval (x̂, ∞) and attains the maximum value at the point x̂. Also f ′(x) → 0 as

|x| → ∞. Define λ̂ as 1/f ′(x̂). It is numerically computed that x̂ ≈ −0.261 and

λ̂ ≈ 2.233.
The existence and the nature of the real fixed points is proved in the following

proposition.

Proposition 3. Let fλ ∈ M.

1. If λ > λ∗, fλ has a unique real fixed point aλ (say) and that is attracting.
2. If λ = λ∗, fλ has a unique rationally neutral real fixed point at x = x∗, where
x∗ is the unique real root of φ(x) = x

f(x) + 1
f ′(x) = 0.

3. If λ < λ∗, fλ has a unique real fixed point rλ (say) and that is repelling.

Proof. Set hλ(x) = fλ(x) − x = λf(x) − x where f(x) = tanh(ex) for x ∈ R and λ
is a non-zero real parameter. Then, h′λ(x) = λf ′(x) − 1 and h′′λ(x) = λf ′′(x).
For all λ,

lim
x→−∞

hλ(x) = +∞ and lim
x→+∞

hλ(x) = −∞ .

Since hλ(x) is a continuous function on R, it has a real zero. Consequently, the
function fλ has a real fixed point xλ (say). Since f(x) > 0 for all x ∈ R, the real
fixed point of fλ has the same sign as that of λ. If λ > 0, the function h′λ(x)
is increasing from the value −1 to the value h′λ(x̂) = λf ′(x̂) − 1 in the interval
(−∞, x̂] and it is decreasing from the value h′λ(x̂) to −1 in the interval [x̂, ∞)
where x̂ satisfies f ′′(x̂) = 0. If λ < 0, the function h′λ(x) is decreasing from the
value −1 to the value h′λ(x̂) = λf ′(x̂) − 1 < 0 in the interval (−∞, x̂] and it is
increasing from the value h′λ(x̂) to −1 in the interval [x̂, ∞). For λ < 0, it follows
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that the function hλ(x) is strictly decreasing and consequently, the real fixed point
xλ of fλ is unique.
Case (1): λ > λ∗

Subcase (a): λ ≥ λ̂
In this case, the function h′λ(x) is increasing from the value −1 to the value h′λ(x̂) =

λf ′(x̂) − 1 ≥ λ̂f ′(x̂) − 1 = 0 in the interval (−∞, x̂] and it is decreasing from the
value h′λ(x̂) to −1 in the interval [x̂, ∞). Therefore, there exist two points x1,λ and
x2,λ (say) with x1,λ ≤ x2,λ such that h′λ(x) = 0 for x = x1,λ and x = x2,λ. Further,
h′λ(x) < 0 for x ∈ (−∞, x1,λ) ∪ (x2,λ, ∞) and h′λ(x) > 0 for x ∈ (x1,λ, x2,λ). If
x2,λ ≤ 0, then −1 < h′λ(x) < 0 for all x > 0. Therefore, it follows that the real fixed
point xλ (which is positive as λ > 0 in this case) of fλ is unique and attracting.
When x2,λ > 0, the function hλ attains the maximum value at x = x2,λ in (0, ∞).
Since 0 < hλ(0) < hλ(x2,λ) and hλ(x) is decreasing in the interval (x2,λ, ∞), it
follows that x2,λ < xλ. Therefore, the real fixed point xλ of fλ is unique and

attracting. Let us rename the fixed point xλ as aλ when λ ≥ λ̂.

Subcase (b): 0 < λ < λ̂

If 0 < λ < λ̂, the maximum value h′λ(x̂) = λf ′(x̂) − 1 < λ̂f ′(x̂) − 1 = 0. It follows
that −1 < h′λ(x) = f ′

λ(x)−1 < 0 for all x ∈ R. Therefore, the real fixed point xλ of
fλ is unique and it is an attracting fixed point for fλ. Rename the real fixed point
xλ as aλ.
Subcase (c): −λ̂ < λ < 0

If −λ̂ < λ < 0, the minimum value h′λ(x̂) = λf ′(x̂) − 1 > −λ̂f ′(x̂) − 1 = −2. It
follows that −2 < h′λ(x) = f ′

λ(x) − 1 < −1 for all x ∈ R. Therefore, the real fixed
point xλ of fλ is attracting for fλ. In this case, we rename xλ as aλ.

Subcase (d): λ∗ < λ ≤ −λ̂
The function h′λ(x) is decreasing from the value −1 to the value h′λ(x̂) = λf ′(x̂)−1 ≤
−λ̂f ′(x̂)− 1 ≤ −2 in the interval (−∞, x̂] and it is increasing from the value h′λ(x̂)

to −1 in the interval [x̂, ∞). Since h′λ(x̂) + 2 ≤ 0 for λ∗ < λ ≤ −λ̂, there exist two
points y1,λ and y2,λ (say) with y1,λ ≤ y2,λ such that h′λ(x) + 2 = 0 for x = y1,λ and
x = y2,λ. Further, h′λ(x)+2 > 0 for x ∈ (−∞, y1,λ)∪(y2,λ, ∞) and h′λ(x)+2 < 0 for
x ∈ (y1,λ, y2,λ). Now, the parameter λ can be realized in two ways as λ = −1

f ′(y1,λ)

and λ = xλ

f(xλ) where y1,λ is the smaller root of h′λ(x) + 2 = 0 and xλ is the unique

real fixed point of fλ. It is noticed that x∗ < x̂ < 0 . Now we shall show that the

points xλ and y1,λ are in the interval (x∗, x̂] and xλ < y1,λ. Since λ∗ < λ ≤ −λ̂,
we have −1

f ′(x∗) <
−1

f ′(y1,λ) ≤ −1
f ′(x̂) . Using the fact that −1

f ′
is strictly increasing in

(−∞, x̂), we get

x∗ < y1,λ ≤ x̂ .

For all x < 0, d
dx

(
x

f(x)

)
> 0 implies that x

f(x) is strictly increasing in R− = {x ∈
R : x < 0}. So, the inequality λ∗ < λ ≤ −λ̂ gives x∗

f(x∗) <
xλ

f(xλ) ≤ −1
f ′(x̂) . Since

x̂ > x∗, we have φ(x̂) > 0 and x̂
f(x̂) >

−1
f ′(x̂) . Therefore, x∗

f(x∗) <
xλ

f(xλ) ≤ −1
f ′(x̂) <

x̂
f(x̂)

which gives that

x∗ < xλ < x̂ .

Since φ(y1,λ) > 0, it follows that
y1,λ

f(y1,λ) > −1
f ′(y1,λ) = xλ

f(xλ) . Since the function
x

f(x) is increasing for x < 0, we get xλ < y1,λ. Now, the function h′λ(x) + 2 > 0

for x < y1,λ. So, it follows that −1 < f ′
λ(x) < 0 for x < y1,λ and in particular,
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−1 < f ′
λ(xλ) < 0. Therefore, the real fixed point xλ is attracting and rename it as

aλ.
Case (2): λ = λ∗

By definition λ∗ = x∗

f(x∗) = −1
f ′(x∗) . Since the function x

f(x) is one-to-one in the

negative real axis, it follows that the real fixed point xλ is equal to x∗. The real
fixed point x∗ is a rationally neutral fixed point, because λ∗f ′(x∗) = −1.
Case (3): λ < λ∗

As in Subcase (d), the minimum value h′λ(x̂) < −2. Therefore, there exist two
points y1,λ and y2,λ (say) with y1,λ < y2,λ such that h′λ(x) + 2 = 0 for x = y1,λ and
x = y2,λ. Further, h′λ(x) + 2 > 0 for x ∈ (−∞, y1,λ) ∪ (y2,λ, ∞) and h′λ(x) + 2 < 0
for x ∈ (y1,λ, y2,λ). Here our intention is to show that the fixed point xλ lies
in (y1,λ, y2,λ) where |f ′

λ(x)| > 1. Arguing on the similar lines as in Subcase (d),
one can get that y1,λ < x∗ < x̂ < y2,λ and xλ < x∗ < x̂ < y2,λ for λ < λ∗. Since
φ(y1,λ) < 0, we get

y1,λ

f(y1,λ) <
−1

f ′(y1,λ) . But, λ = −1
f ′(y1,λ) = xλ

f(xλ) . Therefore,
y1,λ

f(y1,λ) <
xλ

f(xλ) and consequently y1,λ < xλ. Therefore, the fixed point xλ is repelling. Let us

rename it as rλ.

The existence and the nature of the real periodic points of prime period 2 is
explored in the following proposition.

Proposition 4. Let fλ ∈ M.

1. If λ > λ∗, f2
λ has only one real fixed point aλ which is an attracting real fixed

point of fλ.
2. If λ = λ∗, f2

λ has only one real fixed point x∗ which is a rationally neutral real
fixed point of fλ.

3. If λ < λ∗, f2
λ has exactly three real fixed points. One of the fixed points of f2

λ

is rλ which is a repelling real fixed point of fλ. The other two fixed points of
f2

λ are the periodic points of (prime) period 2 of fλ and form an attracting or
a parabolic 2-periodic cycle {a1λ, a2λ} (say) with a1λ < rλ < a2λ < 0.

Proof. Case 1: λ > λ∗

If λ > λ∗, by Proposition 3(1), fλ(x) has a unique attracting fixed point aλ on the
real line. The fixed point aλ of fλ is also a fixed point of f2

λ. Now, we show that
f2

λ has no other real fixed points.
For λ > 0, fλ is strictly increasing on R. If fλ(x) 6= x for a point x ∈ R then

fn
λ (x) 6= x for any integer n > 1. Therefore, it follows that fλ (λ > 0) has no real

periodic points of prime period p ≥ 2.
Let λ∗ < λ < 0. Suppose that there is a fixed point of f2

λ which is different from
aλ. As fλ has only one real fixed point, any fixed point other than aλ of f2

λ will
be a 2-periodic cycle for fλ. If fλ has more than one 2-periodic cycles then the
outermost 2-periodic cycle is chosen for consideration. This is possible, because, if
fλ has two different 2-periodic cycles {a, b} with a < b and {c, d} with c < d, then
it follows from the fact fλ is strictly decreasing for λ < 0 that the two different
2-periodic cycles satisfy c < a < aλ < b < d or a < c < aλ < d < b. In the first case
{c, d} and in the second case {a, b} is called the outer cycle.

Let {d1λ, d2λ} be the outermost 2-periodic cycle of fλ such that fλ(d1λ) = d2λ

and fλ(d2λ) = d1λ with d1λ < d2λ. Set D1 = (−∞, d1λ) and D2 = (d2λ,∞). Since
f2

λ(x) > x for any x ∈ D1, the sequence {f2n
λ (x)} will be a monotonically increasing

sequence and d1λ = sup{f2n
λ (x) : x ∈ D1 and n ∈ N}. Therefore, f2n

λ (x) → d1λ

as n → ∞. Similarly, {f2n
λ (x)} is a monotonically decreasing sequence converging
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(i)

(ii)
 0

 1

 0

Figure 1. Graphs of (i) f2
λ(x) − x and (ii)

(
f2

λ

)′
(x) for λ > λ∗

to d2λ for every x ∈ D2, since f2
λ(x) < x for x ∈ D2 and d2λ = inf{f2n

λ (x) : x ∈
D2 and n ∈ N}. This shows that the cycle {d1λ, d2λ} can be either an attracting
or a parabolic cycle. Note that λ < d1λ < aλ < d2λ < 0 < −λ. This implies that
f2n

λ (λ) → d1λ, f2n
λ (0) → d2λ and f2n

λ (−λ) → d2λ as n→ ∞. Thus, all the singular
values are attracted by the 2-periodic cycle {d1λ, d2λ}. It is shown in Proposition 3
that aλ is a real attracting fixed point of fλ for λ > λ∗. So, the basin of attraction
A(aλ) of the attracting fixed point aλ must contain at least one singular value which
is a contradiction to the fact that all three singular values tend either to d1λ or to
d2λ under iterations of f2

λ. Therefore, f2
λ cannot have any real fixed point other

than aλ if λ∗ < λ < 0 (See Figure 1).

Case 2: λ = λ∗:
If λ = λ∗, by Proposition 3(2), fλ(x) has a unique rationally neutral fixed point x∗

on the real line. The fixed point x∗ of fλ∗ is also a fixed point for f2
λ∗ . By similar

arguments as in Case 1, one can show that f2
λ∗ has no real periodic point of prime

period 2 (See Figure 2).

Case 3: λ < λ∗:
If λ < λ∗, by Proposition 3(3), fλ(x) has a unique repelling fixed point rλ on the

real line. The fixed point rλ of fλ is also a fixed point for f2
λ. Now, we show that

including rλ, the function f2
λ has 3 fixed points on R.

Let x < rλ. Suppose that f2
λ(x) > x. Since f2

λ(x) is strictly increasing on R,

it follows that f2n
λ (x) > f

2(n−1)
λ (x) for all n ∈ N. But, the sequence {f2n

λ (x)}n>0

is bounded above by rλ. By Bolzano theorem, the sequence {f2n
λ (x)} converges to

a point a (say). By the continuity of fλ, it follows that the limit point a will be
a periodic point of prime period at most two. As fλ does not have any real fixed
point other than rλ, the limit point a must be a periodic point of prime period
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Figure 2. Graphs of (i) f2
λ(x) − x and (ii)

(
f2

λ

)′
(x) for λ = λ∗
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 0

Figure 3. Graphs of (i) f2
λ(x) − x and (ii)

(
f2

λ

)′
(x) for λ < λ∗

2. Similarly, the other possibility f2
λ(x) < x also leads to the same conclusion.

Therefore, fλ has a periodic point of prime period 2 on R.
Now, we show that fλ has a unique periodic point of prime period 2 on R.

Suppose that fλ has more than one periodic point of prime period 2 on R. Then,
choose the outermost (in the sense defined earlier in Case 1) 2-periodic cycle of fλ.
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Let {o1λ, o2λ} be the outermost 2-periodic cycle of fλ such that fλ(o1λ) = o2λ

and fλ(o2λ) = o1λ with o1λ < o2λ. As shown in case of λ ∈ (λ∗, 0), we can show
that the 2-periodic cycle {o1λ, o2λ} is either an attracting cycle or a parabolic cycle
of fλ and the singular values 0 and ±λ are attracted by this cycle. Now, let us
consider the innermost 2-periodic cycle {i1λ, i2λ} (say) of fλ with fλ(i1λ) = i2λ

and fλ(i2λ) = i1λ with i1λ < i2λ. Observe that fλ(x) ∈ (rλ, i2λ) for x ∈ (i1λ, rλ)
and fλ(x) ∈ (i1λ, rλ) for x ∈ (rλ, i2λ). This gives that the sequence {f2n

λ (x)}
is bounded for x ∈ (i1λ, i2λ). Since f2

λ is strictly increasing on R, the sequence
{f2n

λ (x)} is monotonic. Since rλ is repelling, {f2n
λ (x)} → i1λ as n → ∞ for x ∈

(i1λ, rλ) and {f2n
λ (x)} → i2λ as n→ ∞ for x ∈ (rλ, i2λ). This shows that the inner

cycle {i1λ, i2λ} is also either attracting or parabolic. But, there is no singular value
that can be attracted by the inner cycle {i1λ, i2λ}, since all the singular values
are already attracted by the outermost cycle. This rules out the existence of the
innermost cycle {i1λ, i2λ}. Therefore, the function fλ has only one 2-periodic cycle
{a1λ, a2λ} (say) that is either attracting or parabolic on R if λ < λ∗ (See Figure 3).
This completes the proof.

4. Dynamics of fλ ∈ M. The dynamics of the function fλ(z) for z ∈ C is inves-
tigated in the present section.

Proposition 5. Let fλ ∈ M. Then, the Fatou set of fλ does not contain wandering
domain or Baker domain.

Proof. For critically finite meromorphic functions, the non-existence of wandering
domains is proved in [2] and the non-existence of Baker domains is proved in [6].
Since the function fλ is critically finite by Proposition 1, it follows that the Fatou
set of fλ does not contain wandering domain or Baker domain.

We determine the dynamics of fλ on the real line in the following proposition.

Proposition 6. Let fλ ∈ M.

1. If λ > λ∗ then fn
λ (x) → aλ as n→ ∞ for all x ∈ R where aλ is the attracting

real fixed point of fλ.
2. If λ = λ∗ then fn

λ (x) → x∗ as n→ ∞ for all x ∈ R where x∗ is the rationally
neutral real fixed point of fλ.

3. If λ < λ∗ then f2n
λ (x) → a1λ as n → ∞ for x < rλ and f2n

λ (x) → a2λ

as n → ∞ for x > rλ where {a1λ, a2λ} is the attracting or parabolic real
2-periodic cycle and rλ is the repelling real fixed point of fλ.

Proof. Case 1: λ > λ∗

By Proposition 3(1) and Proposition 4(1), the function fλ(z) has a unique real
attracting fixed point aλ and f2

λ has no fixed point other than aλ on the real line. It
is noted that f2

λ is strictly increasing and bounded on R. Observe that f2
λ(x) > x for

x < aλ. It implies that {f2n
λ (x)} is a monotonically increasing bounded sequence

and hence convergent. By continuity of f2
λ, it follows that the limit point of {f2n

λ (x)}
is a fixed point of f2

λ and therefore it equals to the only such point, namely, aλ.
Therefore, f2n

λ (x) → aλ as n → ∞ for x < aλ. Similarly, the same conclusion

follows for x > aλ since f2
λ(x) < x for x > aλ. Therefore, lim

n→∞
f2n

λ (x) = aλ for

all x ∈ R. Since aλ is an attracting fixed point of the continuous function fλ, it is
concluded that fn

λ (x) → aλ as n→ ∞ for all x ∈ R.
Case 2: λ = λ∗

By Proposition 3(2) and Proposition 4(2), the function fλ(z) has a unique rationally
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neutral real fixed point x∗ and f2
λ has no fixed point other than x∗ on the real line.

Since f2
λ is a strictly increasing, bounded function on R with f2

λ(x) > x for x < x∗

and f2
λ(x) < x for x > x∗, it follows by similar arguments as in the previous case

that f2n
λ (x) → x∗ as n → ∞ for x ∈ R. Since fλ is continuous and x∗ is a fixed

point of fλ, it is concluded that fn
λ (x) → x∗ as n→ ∞ for all x ∈ R.

Case 3: λ < λ∗

On the real line R, the function fλ has a unique repelling real fixed point rλ by
Proposition 3(3), and has a unique attracting or parabolic 2-periodic cycle {a1λ, a2λ}
with a1λ < rλ < a2λ < 0 by Proposition 4(3). Observe that f2

λ(x) > x for x < a1λ.
Since f2

λ is strictly increasing on R and f2
λ(a1λ) = a1λ, it follows that the sequence

{f2n
λ (x)} is a monotonically increasing sequence and sup{f2n

λ (x) : n ∈ N} = a1λ

for x ≤ a1λ. This gives that lim
n→∞

f2n
λ (x) = a1λ for x ≤ a1λ. Since f2

λ(x) < x for

a1λ < x < rλ, the sequence {f2n
λ (x)} is monotonically decreasing and bounded

below by a1λ. Therefore, f2n
λ (x) → a1λ as n → ∞ for a1λ < x < rλ. For x ∈

(rλ, a2λ), the function f2
λ satisfies f2

λ(x) > x. Consequently, the sequence {f2n
λ (x)}

is monotonically increasing and converges to a2λ. When x ≥ a2λ, the sequence
{f2n

λ } is decreasing and bounded below by a2λ, since f2
λ(x) < x for x > a2λ and

f2
λ(a2λ) = a2λ. Therefore, f2n

λ (x) → a2λ as n → ∞ for x ≥ a2λ which completes
the proof.

In the following, we present the proof of Theorem 1.
Proof of Theorem 1.
Case 1: λ > λ∗

By Proposition 3(1), the function fλ(z) has a unique real attracting fixed point aλ

on the real line. Let A(aλ) = {z ∈ Ĉ : fn
λ (z) → aλ as n → ∞} be the basin of

attraction of the real attracting fixed point aλ. Since by Proposition 6(1), the real
line R is in the basin of attraction A(aλ) and in particular, all the singular values
{λ,−λ, 0} and their forward orbits are in A(aλ).

The Fatou set of fλ(z) has no basin of attraction other than A(aλ). To see this,
assume, if possible, A(zλ) is a basin of attraction of an attracting periodic point
zλ 6= aλ. Obviously, A(zλ)

⋂
A(aλ) = ∅. But, A(zλ) contains at least one singular

value and its forward orbit. This contradicts the fact that all the singular values and
their forward orbits are contained in A(aλ), since A(zλ)

⋂
A(aλ) = ∅ for zλ 6= aλ.

The Fatou set of fλ(z) cannot contain a parabolic domain. For, if the Fatou set
of fλ(z) contains a parabolic domain U , then U must contain at least one singular
value, which leads to a contradiction to the fact that all the singular values are in
A(aλ).

Again, the Fatou set of fλ(z) cannot contain a Siegel disk or a Herman ring. For,
if possible, the Fatou set of fλ(z) contains a Siegel disk or a Herman ring, then the
boundary of Siegel disk / Herman ring is contained in the closure of the forward
orbits of all singular values of fλ(z). But all the singular values and their forward
orbits are contained in A(aλ), giving a contradiction.

By Proposition 5, the Fatou set of fλ(z) does not contain Baker domains or
wandering domains. Therefore, the Fatou set of fλ(z) is equal to the basin of
attraction A(aλ) of the attracting real fixed point aλ if λ > λ∗.
Case 2: λ = λ∗

The function fλ(z) has a unique rationally neutral real fixed point x∗ on the real

line by Proposition 3(2). Let P (x∗) = {z ∈ Ĉ : fn
λ (z) → x∗ as n → ∞} be

the parabolic basin corresponding to the rationally neutral real fixed point x∗. By
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Proposition 6(2), it follows that the real line R and in particular, all the singular
values {λ,−λ, 0} and their forward orbits are in the parabolic basin P (x∗). Now,
the Fatou set of fλ(z) for λ = λ∗ does not contain any other parabolic domain U
other than P (x∗). If the Fatou set of fλ∗(z) contains any other parabolic domain
U (6= P (x∗)), then U must contain at least one singular value which is not possible.

Since all singular values are in P (x∗), the Fatou set of fλ∗(z) cannot contain a
basin of attraction. The proofs of the fact that the Fatou set of fλ(z) for λ = λ∗

does not contain Sigel disk, Herman ring, Baker domain and wandering domain
are similar to that of Case 1. Thus, all the possible stable domains other than the
components of P (x∗) are ruled out and hence the Fatou set of fλ∗(z) equals the
parabolic basin P (x∗) corresponding to the rationally neutral real fixed point x∗.
Case 3: λ < λ∗

By Proposition 4(3), the function fλ(z) has an attracting or a parabolic real 2-
periodic cycle {a1λ, a2λ} with a1λ < rλ < a2λ < 0 where rλ is the unique repelling
real fixed point. Let us denote the basin of attraction of the attracting real 2-
periodic cycle or the parabolic basin corresponding to the real parabolic 2-periodic
cycle as

A = {z ∈ Ĉ : f2n
λ (z) → a1λ or f2n

λ (z) → a2λ as n→ ∞} .
By Proposition 6(3), it follows that the real line R except the point rλ and in
particular, all the singular values {λ,−λ, 0} and their forward orbits are in A. By
proceeding in the same lines of arguments as in Case 1 or Case 2, we get that Fatou
set of fλ(z) does not contain Herman ring, Sigel disk, Baker domain, wandering
domain or any basin of attraction or parabolic basin other than A. Therefore, the
Fatou set of fλ(z) = A for λ < λ∗.

Theorem 1 gives the following characterization of the Julia set of fλ(z) which is
computationally useful to generate the pictures of the Julia sets.

Corollary 1. Let fλ ∈ M.

1. If λ > λ∗ then the Julia set J(fλ) is the complement of the basin of attraction
A(aλ) where aλ is the attracting real fixed point of fλ.

2. If λ = λ∗ then the Julia set J(fλ) is the complement of the parabolic basin
P (x∗) where x∗ is the rationally neutral real fixed point of fλ.

3. If λ < λ∗ then the Julia set J(fλ) is the complement of the basin of attraction
or the parabolic basin corresponding to the attracting or the parabolic real 2-
periodic cycle {a1λ, a2λ}.

5. Topology of the Fatou components. In the present section, the proofs of
Theorems 2 and 3 are mainly provided. Some preliminary observations on the Fatou
set of fλ are made in Propositions 7 and 8.

Proposition 7. Let fλ ∈ M. Then,

1. The Fatou set of fλ contains the left half-plane Hλ = {z ∈ C : ℜ(z) < Mλ}
where Mλ is a real number depending on λ.

2. The Fatou set of fλ contains the horizontal lines L2k+1 = {x + i(2k + 1)π :
x ∈ R} for every integer k. Further, there exists a real number δ ∈ (0, π

2 )
depending upon λ such that the strip S2k+1 = {z ∈ C : |ℑ(z)− (2k+ 1)π| <
δ, ℜ(z) ≥Mλ} is contained in the Fatou set.
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Proof. 1. For every fλ ∈ M, the point z = 0 is always either in the basin of
attraction or in the parabolic domain by Proposition 6. Since z = 0 is in the
Fatou set of fλ, there exists a disk Dr(0) = {z ∈ C : |z| < r} for some r > 0
such that Dr(0) ⊂ F(fλ).

Since ez maps the left half-plane {z ∈ C : ℜ(z) < a} where a ∈ R

onto a punctured disk D∗(0) = {z ∈ C : 0 < |z| < ea} and tanh(0) = 0,
we can find a real number Mλ depending on λ such that the left half-plane
Hλ = {z ∈ C : ℜ(z) < Mλ} is mapped inside the open ball Dr(0) ⊂ F(fλ) by
the map w = fλ(z). Therefore, the Fatou set of fλ contains the left half-plane
Hλ = {z ∈ C : ℜ(z) < Mλ}.

2. The function ez maps the horizontal lines L2k+1 = {x + i(2k + 1)π : x ∈
R} where k ∈ Z, onto the negative real axis {x ∈ R : x < 0}. The
function λ tanh(x) maps the negative real axis into a subset of the real axis.
By Proposition 6, if λ > λ∗, the real line R is contained in the Fatou set of fλ.
Therefore, it follows that the horizontal lines L2k+1 = {x+i(2k+1)π : x ∈ R}
where k ∈ Z, are in the Fatou set of fλ for λ > λ∗.

If λ ≤ λ∗ < 0, the function λ tanh(x) maps the negative real axis into
a subset of the positive real axis. By Proposition 6, if λ ≤ λ∗, the positive
real axis is contained in the Fatou set of fλ. This gives that the horizontal
lines L2k+1 = {x+ i(2k + 1)π : x ∈ R} where k ∈ Z, are in the Fatou set of
fλ for λ ≤ λ∗.

It is already shown that −λ lies in the Fatou set of fλ. So, there exists
a disk Dr(−λ) with center at −λ and radius r such that Dr(−λ) is a subset

of the Fatou set. One can find a M̃λ < 0 depending on λ so that λ tanh z
maps the half-plane H̃ = {z : ℜ(z) < M̃λ} into Dr(−λ). Now, we choose

δ∗ ∈ (0, π
2 ) and M∗

λ > 0 depending on M̃λ such that the image of the strip
{z ∈ C : |ℑ(z) − (2k + 1)π| < δ∗, ℜ(z) > M∗

λ} under ez is an angular

region {z ∈ C : | arg(z) − π| < δ∗, |z| > eM∗

λ} lying in the left half-plane

H̃ . Therefore, {z ∈ C : |ℑ(z) − (2k + 1)π| < δ∗, ℜ(z) > M∗
λ} is in the

Fatou set of fλ. As the line segment {z ∈ L2k+1 : Mλ ≤ ℜ(z) ≤ M∗
λ} is

in the Fatou set, there exists a δ̂ ∈ (0, π
2 ) such that the rectangular region

{z ∈ C : |ℑ(z) − (2k + 1)π| < δ̂, Mλ ≤ ℜ(z) ≤ M∗
λ} is in the Fatou set of

fλ. Choosing δ to be the minimum of δ∗ and δ̂, it follows that S2k+1 = {z ∈
C : |ℑ(z) − (2k + 1)π| < δ, ℜ(z) ≥Mλ} is contained in the Fatou set.

Remark 1. For λ > λ∗, it also follows that the Fatou set of fλ contains the
horizontal lines L2k = {x + i 2kπ : x ∈ R} where k ∈ Z by the same arguments
used in proving the second part of the above proposition.

A maximally connected subset of the Julia set is called a component of the Julia
set. We prove in the following proposition that the Julia set of fλ for λ > λ∗ cannot
contain an unbounded component.

Proposition 8. Let fλ ∈ M. If λ > λ∗ then every component of J(fλ)
⋂

C is
bounded.

Proof. Let, on the contrary, γ be an unbounded component of J(fλ)
⋂

C. Then a
sequence tn can be found on γ such that limn→∞ tn = ∞. It follows from Proposi-
tion 7 and Remark 1 that γ lies in a horizontal strip bounded by Lk and Lk+1 for
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some k ∈ Z and the set {ℜ(tn) : n ∈ N} is unbounded. Now, observe that the
image γ1 = eγ of γ is unbounded under the mapping w = ez.

If γ1 intersects Lk for some k ∈ Z then the map λ tanh(z) takes each such in-
tersecting point to a real number which is in the Fatou set. In this way, there is
a point common to γ and the Fatou set of fλ which is a contradiction. There-
fore, γ1 lies in some horizontal strip bounded by two consecutive Lk’s. Since γ1

is unbounded, there exists a sequence sn on γ1 such that limn→∞ ℜ(sn) = ∞ or
limn→∞ ℜ(sn) = −∞. But in both the cases, λ tanh(sn) tends to an asymptotic
value of fλ as n → ∞. Since all the three asymptotic values lie in the Fatou set,
there is a sequence {zn}n>0 on γ such that ezn = sn and fλ(zn) is a subset of the
Fatou set for sufficiently large n. By the complete invariance of the Fatou set, there
are points zn on γ which are in the Fatou set. It gives a contradiction. Therefore,
any component of J(fλ)

⋂
C is bounded.

In the following, the proof of Theorem 2 is given.
Proof of Theorem 2.
Let V be a component of the Fatou set of fλ different from the immediate basin
of attraction IM(aλ) of the attracting fixed point aλ. Then, there exists a natural

number k such that fk
λ(V ) ⊆ IM(aλ). Let W = fk−1

λ (V ). If U1 and U2 are
two Fatou components of a meromorphic function f such that f : U1 → U2, then
U2 \ f(U1) contains at most two points [18]. The two exceptional values ±λ of
fλ lie in IM(aλ). Therefore, it follows that fλ(W ) = IM(aλ) \ {λ, −λ}. Let
Dr(λ) be a disk of radius r > 0 with center λ such that Dr(λ) is contained in
IM(aλ). Let U(r) be a component of f−1

λ (Dr(λ)) in W . If r2 < r1 < r then there

are components U(r2) of f−1
λ (Dr2

(λ)) and U(r1) of f−1
λ (Dr1

(λ)) in U(r) ⊂ W
such that U(r2) ⊂ U(r1). Note that U(r) is unbounded, since there is only one
logarithmic singularity of f−1

λ over λ and for that
⋂

r>0(U(r)) = ∅ [7]. Thus, there
are at least two unbounded components, namely, W and IM(aλ) of the Fatou
set. Consequently, the boundary of any of these two unbounded components is
an unbounded component of J(fλ)

⋂
C. But, it is not possible by Proposition 8.

Therefore, the Fatou set of fλ for λ > λ∗ contains only one component and hence,
the Fatou set is connected.

It is shown in [1] that the connectivity of an invariant Fatou component is either
1, 2 or ∞, 2 being the case for Herman rings. For λ > λ∗, the Fatou set of fλ is
equal to the basin of attraction of the attracting fixed point aλ and the connectivity
of the Fatou set is either 1 or ∞. If the connectivity of the Fatou set is 1, then
the Julia set is connected and there is an unbounded component of J(fλ)

⋂
C. But

this is impossible by Proposition 8. Therefore, the Fatou set of fλ for λ > λ∗ is
infinitely connected.

As a consequence of Proposition 8 and the infinite connectivity of F(fλ) for
λ > λ∗, we make the following remark on the Julia set of fλ for λ > λ∗.

Remark 2. Let w be a pre-pole of fλ. If it is not a singleton component of the
Julia set then there will be a component γ of the Julia set that contains w and
fk

λ(γ) ⊂ J(fλ) is a component containing the point z = ∞ for some natural number
k. But, it is not possible for λ > λ∗ by Proposition 8. Thus, every pre-pole is a
singleton component of the Julia set of fλ for λ > λ∗. Since pre-poles are dense in
J(fλ), we conclude that the singleton components of the Julia set are dense in the
Julia set of fλ for λ > λ∗. It can also be concluded from the previous theorem and
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using Theorem (A) in [16]. It is not known that non-singleton components exist or
not in the Julia set of fλ for λ > λ∗.

Let I1 be a component of the Fatou set containing the interval (−∞, a1λ) when
λ < λ∗. When λ = λ∗, let I1 denote the Fatou component containing the interval
(−∞, x∗). Let I2 denote the Fatou component containing fλ(I1). We use these
notations in the following lemma which is required to prove Theorem 3.

Lemma 2. Let fλ ∈ M with λ ≤ λ∗. Let V be a component of the Fatou set F(fλ)

of fλ. If γ is a Jordan curve in V and the bounded component B of Ĉ \ γ intersects
the Julia set then B does not contain any pole of fλ.

Proof. Since V is a Fatou component, fλ(V ) is contained in a Fatou component,

say V1. Let γ be a Jordan curve in V and the bounded component B of Ĉ \ γ
intersects the Julia set.

Suppose that V1 is different from I1. Let us assume, on the contrary that B
contains a pole. Then, B1 = fλ(B) contains {z : |z| > M} for some M > 0. Since
I1 is unbounded, B1 intersects I1. It means that there are points in B whose fλ-
images belong to I1. Consequently, there is a Fatou component, say W in B such
that fλ(W ) ⊆ I1. In [18], it has been proved that for any meromorphic function
f : A1 → A2, the cardinality of the set A2 \ f(A1) is at most two where A1 and A2

are two Fatou components of f . Using this result, it follows that E = I1 \ fλ(W )
contains at most two points. Since λ ∈ I1, there exists a neighborhood Nλ of the
point λ which is completely contained in I1 and Nλ

⋂
E = {λ}. Therefore, there is

a component of f−1
λ (Nλ) in W . As there is only one singularity lying over −λ and

it is logarithmic, every component of f−1
λ (Nλ) is unbounded [7]. Consequently, W

is unbounded and B is also unbounded which is not true. Therefore, it follows that
B contains no pole of fλ.

Suppose that V is a Fatou component such that fλ(V ) ⊂ I1. Since I2 is un-
bounded, −λ ∈ I2 and, there is only one singularity lying over −λ and it is loga-
rithmic, the same arguments given in the previous paragraph with I1 replaced by I2
are applied to conclude that B contains no pole of fλ. It completes the proof.

Now, we present the proof of Theorem 3.

Proof of Theorem 3. 1. By Theorem 1, it follows that the Fatou set F(fλ) for
λ < λ∗ is equal to the basin of attraction or the parabolic basin corresponding
to the attracting or the parabolic real 2-periodic cycle {a1λ, a2λ} of fλ. Let
{a1λ, a2λ} be attracting cycle. Let IM(a1λ) be the component of the Fatou
set containing the point a1λ and IM(a2λ) be the component of the Fatou
set containing the point a2λ. Then, (−∞, rλ) ⊂ IM(a1λ) and (rλ, ∞) ⊂
IM(a2λ). Let L2k = {x + i 2kπ : x ∈ R} where k ∈ Z and k 6= 0. Then,
fλ : L2k → (λ, 0) is a bijection and it maps L−

2k = {x + i 2kπ : −∞ <

x < rλ = f−1
λ (rλ)} and L+

2k = {x + i 2kπ : rλ = f−1
λ (rλ) < x < ∞}

to (rλ, 0) and (λ, rλ) respectively. It gives that L+
2k and L−

2k lie in two
different components of the Fatou set. It is clear that some left half-plane
Hλ, all horizontal lines L2k+1 = {x + i (2k + 1)π : x ∈ R} for k ∈ Z and
L−

2k = {x + i 2kπ : −∞ < x < rλ} are in IM(a1λ). Further, L+
2k lies in a

component, Wk (say) of the Fatou set which is different from IM(a1λ) and
IM(a2λ). For each non-zero integer k, we can find such component Wk which
contains the line L+

2k and Wk

⋂
Wl = ∅ for k 6= l. These components Wk’s are

pre-periodic but not periodic.
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If {a1λ, a2λ} is a parabolic cycle then there will be two different components
of Fatou set containing (−∞, a1λ) and (a2λ,∞). Considering them as IM(a1λ)
and IM(a2λ), it can be observed that IM(a1λ) contains some half-plane Hλ

and horizontal lines L2k+1. Similar arguments as in previous paragraph gives
the existence of infinitely many Fatou components Wk containing L+

2k = {x+

i 2kπ : f−1
λ (a1λ) < x < ∞} for non-zero integer k which are different from

IM(a1λ) and IM(a2λ). These components are pre-periodic but not periodic.
For λ = λ∗, the proof is similar to the case λ < λ∗.

2. Let V be any component of the Fatou set of fλ for λ ≤ λ∗. Suppose that
V is not simply connected. Let γ be a Jordan curve in V for which the

bounded component U of Ĉ \ γ contains at least one component of Ĉ \V . Set
Un = fn

λ (U) for n = 0, 1, 2, · · · . By Lemma 2, it follows that U does not
contain any pole. Since the boundary of U also does not contain any pole, the
component U1 = fλ(U) is a bounded domain. Also, the boundary of U1 is a
subset of fλ(∂U). Since the boundary ∂U of U is the Jordan curve γ which is
in the Fatou set, the image fλ(∂U) is in a Fatou component, and hence, ∂U1 is
in a Fatou component. If U1 does not contain a pole, the boundary of U2 lies
in a Fatou component by repeating the above arguments. As U

⋂
J(fλ) 6= ∅,

after finite number of steps, we can find a natural number n0 for which Un0

contains a pole which gives a contradiction to Lemma 2. Therefore, it is
concluded that the component V of the Fatou set of fλ for λ ≤ λ∗ is simply
connected.

Remark 3. For λ ≤ λ∗, all the singular values of fλ are in the immediate basin
of attraction or in the petals of the parabolic domain which are not completely
invariant.

6. Measure of J(fλ). In this section, the (Lebesgue) measure of the Julia set of
fλ ∈ M is computed.

Let m(A) denote the measure of A ⊂ Ĉ and Dr(z) denote the disk of radius r

with center at z. A subset E of Ĉ is said to be thin at ∞ if its density is bounded
away from 1 in all sufficiently large disks, that is, if there exist positive R0 and ǫ
such that, for all complex z and every disk Dr(z) = {w : |w − z| < r}, r > R0,

density(E,Dr(z)) =
m(E

⋂
Dr(z))

m(Dr(z))
< 1 − ǫ.

For a given meromorphic function f , let

P ∗
f =

{
z : for some n ∈ N some branch of f−n has a singularity at z

}

and Pf = P ∗
f \ {∞}.

The following proposition is due to Stallard [25].

Proposition 9. Let f be a meromorphic function and d(Pf , J(f)) > 0 where Pf

is the closure of Pf in C. If E is a measurable completely invariant subset of J(f)
such that E is thin at ∞, then m(E) = 0. In particular, the Julia set has measure
zero if it is thin at ∞.

Theorem 4. Let fλ ∈ M. Then, the Julia set of fλ has measure zero.
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Proof. It is already shown that each singular value of fλ is in an attracting basin
or a parabolic domain. It gives that d(Pfλ

, J(fλ)) > 0. In view of Proposition 9,
it is enough to show that J(fλ) is thin at ∞ in order to show that the measure of
J(fλ) is zero.

Let M ≡ M(λ) and δ ≡ δ(λ) be two real numbers such that Hλ = {z ∈ C :
ℜ(z) < M} and S2k+1 = {z ∈ C : |ℑ(z) − (2k + 1)π| < δ, ℜ(z) ≥ M} are in the
Fatou set of fλ which is possible by Proposition 7.

Now, consider the square S(z, r) = {w : |ℜ(w) − ℜ(z)| < r
√

2
2 , |ℑ(w) − ℑ(z)| <

r
√

2
2 } having its sides parallel to the co-ordinate axes and it is inscribed in the

disk D(z, r) with center at z and radius r. For a rectangle R having its sides par-
allel to co-ordinate axes with vertical side length 2π and horizontal side length h,
R

⋂
F(fλ) ⊃ R

⋂
(
⋃

k∈Z
S2k+1). It implies that m(R

⋂
F(fλ)) >

m(R
⋂

(
⋃

k∈Z
S2k+1)) > 2δh. If j = [ r

√
2

2π
] is the greatest integer not exceeding

r
√

2
2π

then S(z, r) will contain j different rectangles each having its sides parallel

to co-ordinate axes with vertical side length 2π and horizontal side length r
√

2.

It gives that m(F(fλ)
⋂
S(z, r)) > j2δr

√
2 ≥ ( r

√
2

2π
− 1)(2δr

√
2) = 2δr2

π
− 2δr

√
2.

Consequently, m(F(fλ)
⋂
Dr(z)) >

2δr2

π
− 2δr

√
2 = 2δ( r2

π
− r

√
2) and

density(F(fλ), Dr(z)) =
m(F(fλ)

⋂
Dr(z))

m(Dr(z))
>

2δ

πr2

(
r2

π
− r

√
2

)
.

Now, density(F(fλ), Dr(z)) >
2δ
π

( 1
π
−

√
2

r
) > δ

π2 for r > 2
√

2π.

Letting ǫ = δ
π2 and R0 = 2

√
2π, it is concluded that density(F(fλ), Dr(z)) > ǫ

for all z ∈ C and all r > R0. Since density(F(fλ), Dr(z))+density(J(fλ), Dr(z)) =
1, it follows that density(J(fλ), Dr(z)) < 1 − ǫ for all z ∈ C and all r > R0.
Therefore, the Julia set of fλ is thin at ∞ which completes the proof.
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