Relationship between the Onset of Semi-fluidization Velocity & the Minimum Fluidization Velocity G. K. ROY* & P. SENGUPTA Department of Chemical Engineering, Indian Institute of Technology, Kharagpur Manuscript received 27 November 1971; accepted for publication 5 June 1972 Data on the semi-fluidization characteristics of a few gas-solid systems have been obtained. The correlation, $G_{osf}/G_{mf} = A\left(\frac{D_c}{d_p}\right)^{a_1}\left(\frac{\rho_s}{\rho_f}\right)^{a_2}(R)a_3$, relating the onset of semi-fluidization velocity (G_{osf}) with the minimum fluidization velocity (G_{mf}) has been developed in terms of various system parameters $(D_c$, column diameter; d_p , particle diameter; ρ_s , ρ_f , densities of solid and fluid respectively; and R, bed expansion ratio in state of semi-fluidization). The values of the constants A, a_1 , a_2 and a_3 are 2.66×10^2 , 0.62, -1.0, 0.5 and 3.4×10^3 , 1.11, -1.78, 0.89 for non-spherical and spherical particles respectively. SEMI-FLUIDIZATION, a recent development in the field of fluid-solid contact operations, is highly suitable for mixed and tubular reactors¹. A semi-fluidized bed is a compromise between the packed and the fluidized bed conditions, eliminating certain drawbacks of both these operations². The introduction of a porous disc or sieve in a conventional fluidizer arrests the free upward motion of the particles and results in the formation of a semi-fluidized bed consisting of a top packed section and a bottom fluidized portion. Investigations dealing with the various aspects of liquid-solid semi-fluidization³ have been reviewed by Roy and Sarma^{4,5}. Very little information is available in the field of gas-solid semi-fluidization. In a recent communication⁶, the present authors reported some data on gas-solid semi-fluidization. This paper presents a correlation, which relates the ratio of the minimum semi-fluidization velocity to the minimum fluidization velocity with the system parameters. ## **Experimental Procedure** The set-up used (Fig. 1) is a conventional semifluidizer made of perspex column of 4.5 cm int. diam. and 57 cm length. The bottom grid consists of a 150 mesh screen. The movable restraint is made of 80 mesh brass screen. The air flow rate was measured by an orificemeter. The bed pressure drops were measured with the help of two sets of manometers. While taking a run, a definite amount of material is charged into the column and the bed height noted. The movable restraint is adjusted for a fixed bed expansion ratio. With increase in air flow rate, pressure drops across the bed and the top bed formations are noted. The static and expanded bed porosities are determined in separate experiments. The surface area of the particles and the shape factor have been determined by the air permeability method⁷. #### Results and Discussion Two spherical and four non-spherical materials of <u>different size fractions</u> were used (Table 1). In *Present address: Department of Chemical Engineering, Regional Engineering College, Rourkela . Fig. 2, a typical plot of bed pressure drop against fluid mass velocity is given. The onset velocities of semi-fluidization have been evaluated from similar plots and are given in Table 2. Prediction of minimum semi-fluidization velocity from minimum fluidization velocity — The onset of fluidization and semi-fluidization represent the two consecutive sequences of operations of the semi-fluidization phenomena. While the former corresponds to the initiation of particle movement in a fluid-solid bed, the latter indicates the fluid velocity at which the first particle of the bed touches the top restraint of the semi-fluidizer. For finding the minimum fluidization velocity, several correlations are available in literature. One of the most generalized equations is the one derived by Leva and coworkers, which is valid over a wide range of Fig. 1 — Experimental set-up: Schematic diagram [(1), (3) manometers for orificemeter; (2), (4) manometers for bed; (5) semi-fluidizer, (6) movable restraint assembly; (7) top restraint; (8) inclined feeder; (9) distributor; (10) flexible connection; (11) orificemeter; (12) reservoir; (13) compressor; (14) structure; (15) base plate support; (16) clamp; (17) manometer panel board; (18) line pressure gauge; (19) reservoir pressure gauge; V₁ V₅, V₇ bypass valves; V₂, V₃, V₄ control valves; and V₆ solid valve] | Material | Particle size | | Density | Packed bed porosity | Surface area (S_v) | Sphericity (ϕ_s) | |--|---|--|---|---|---|---| | | Mesh
No.
BSS | Size (d_p) m×104 | (ps)
g/cc | (ϵ_{pa}) | cm^2/m^3 | (ψs) | | Non-spherical | | | | | | | | Table salt do do do Ammonium sulphate Sand Magnesite | 20/30
30/40
40/52
52/60
30/40
30/40
30/40 | 7·51
4·42
3·38
2·74
4·42
4·42 | 2·100
2·100
2·100
2·100
1·763
2·650
2·800 | 0.596
0.588
0.560
0.533
0.377
0.451
0.443 | 241·0
300·5
302·0
335·0
136·0
170·5
177·0 | 0·331
0·452
0·587
0·654
1·000
0·798
0·770 | | SPHERICAL | | | | • | | | | Mustard seed
Sago | 14/20
14/20 | 11·05
11·05 | 1·120
1·304 | 0·362
0·380 | 54·2
54·2 | 1·000
1·000 | | System | <i>d</i> , | G | R | G_{osf} | Gus | Gui | Deviation of | |-----------------------|-----------------------------|-------------------|--------------------------|------------------------------|------------------------------|--------------------------------------|--------------------------------------| | System | $\frac{d_p}{m \times 10^4}$ | G_{mf} kg/hr m² | К | kg/hr m² (exp.) | $\frac{G_{osf}}{G_{mf}}$ | G_{osf} $kg/hr m^2$ [from Eq. (4)] | calc. from exp. value | | Non-spherical | | | | | | | | | Table salt-air | 7.51 | 804 | 2·0
2·5
3·0
3·5 | 2200
2650
2900
3250 | 2·74
3·30
3·61
4·05 | 2215
2480
2715
2925 | +0.70 -6.40 -6.38 -10.00 | | do | 4.42 | 491 | 2·0
2·5
3·0
3·5 | 1350
2000
2275
2600 | 3·76
4·07
4·64
5·30 | 1887
2115
2310
2500 | +2·00
+5·75
+1·27
-3·84 | | do | 3.38 | 390 | 2·0
2·5
3·0
3·5 | 1462
1675
2025
2225 | 3·75
4·30
5·20
5·71 | 1770
1970
2165
2340 | $+21.00 \\ +17.60 \\ +6.90 \\ +5.16$ | | do | 2.74 | 258 | 2·0
2·5
3·0
3·5 | 1250
1550
1850
1950 | 4·85
6·00
7·16
7·55 | 1330
1490
1630
1760 | +6·40
-3·87
-11·90
-9·75 | | Ammonium sulphate-air | 4.42 | 349 | 2·0
2·5
3·0
3·5 | 1750
2050
2550
2850 | 5·01
5·87
7·30
8·16 | 1592
1785
1955
2106 | -9·04
-12·90
-23·40
-26·10 | | Sand-air | 4.42 | 653 | 2·0
2·5
3·0
3·5 | 1850
2050
2450
2750 | 2·38
3·14
3·75
4·21 | 1985
2220
2428
2625 | +7·30
+8·30
-0·90
-4·55 | | Magnesite-air | 4.42 | 596 | 2·0
2·5
3·0
3·5 | 1875
2100
2500
2900 | 3·14
3·52
4·20
4·86 | 1720
1924
2106
2275 | -8·38
-8·38
-15·75
-21·50 | | SPHERICAL | • | | | • | | | | | Mustard seed-air | 11.05 | 1200 | 2·0
2·5
3·0
3·5 | 2450
2800
3400
4000 | 2·04
2·33
2·83
3·33 | 2375
2900
3405
3910 | $-3.06 \\ +3.57 \\ +0.15 \\ -2.25$ | | Sago-air | 11.05 | 1665 | 2·0
2·5
3·0
3·5 | 2500
2900
3500
4100 | 1·50
1·74
2·10
2·46 | 2530
3080
3600
4160 | +1·20
+6·20
+2·86
+1·46 | variables. Thus, G_{mf} is given as $$G_{mf} = \frac{0.005 \ g_c \rho_f (\rho_s - \rho_f) d_p^2 \phi_s^2}{\mu} \frac{\epsilon_{pa}^3}{(1 - \epsilon_{pa})^2} \dots (1$$ The calculated values of G_{mf} and the ratios of G_{osf}/G_{mf} for the systems studied are given in Table 2. It is intuitive that both in fluidization and semifluidization, the properties of the fluid and the solid as well as the geometry of the system will influence the onset conditions. Among the variables encountered, the important ones are: h_s , D_c , d_p , ρ_s , ρ_f and R. Writing in the form of dimensionless groups $$\frac{G_{osf}}{G_{mf}} = \phi \left[\frac{h_s}{D_c}, \frac{D_c}{d_p}, \frac{\rho_s}{\rho_f}, R \right] \qquad \dots (2)$$ It has been observed in the course of investigations that variation in bed height does not appreciably affect the velocity of onset of semi-fluidization. Ignoring the effect of h_s/D_c , the expression reduces $$\frac{G_{osf}}{G_{mf}} = A \{ (D_c/d_p)^{a_1} (P_s/P_f)^{a_2} (R)^{a_3} \} \qquad \dots (3)$$ The exponents a_1 , a_2 and a_3 have been evaluated experimentally. In Fig. 3 the values of the ratio G_{osf}/G_{mf} are plotted on a log-log paper against the product $\{(D_c/d_p)^{0.623}(\rho_s/\rho_f)^{-1.0}(R)^{0.5}\}$. Two different straight lines, one for the spherical and the other for the non-spherical particles, have been obtained. For the non-spherical particles, the slope of the line was 1.0 and for the spherical ones it was 1.78. The final correlations can be given as: For non-spherical particles: $$\frac{G_{osf}}{G_{mf}} = 2.66 \times 10^{2} (D_{c}/d_{p})^{0.62} (P_{s}/P_{f})^{-1.0} (R)^{0.5} \qquad \dots (4a)$$ For spherical particles: $$\frac{G_{osf}}{G_{out}} = 3.4 \times 10^{3} (D_c/d_p)^{1.11} (P_s/P_f)^{-1.78} (R)^{0.89} \qquad ...(4b)$$ The values of G_{osf} calculated from Eqs. (4a) and (4b) have been found to be in good agreement with Fig. 3 — Correlation plot of G_{osf}/G_{mf} with system variables the experimental data. The deviations are given in Table 2, and it is seen that the spherical materials show lesser deviation. It should, however, be noted that the present study was confined only to two spherical materials and as such, the effect of sphericity, if any, could not be properly ascertained. Further work to study this aspect is necessary. #### Nomenclature = diam. of column, L = particle diam., L = gravitational constant, $L\theta^{-2}$ = mass velocity of fluid, $M\theta^{-1}L^{-2}$; subscript mf for minimum fluidization and osf for onset of semifluidization = height of column, L; subscript pa for packed bed and s for static bed pressure drop across semi-fluidized bed, FL^{-2} bed expansion ratio in semi-fluidization, dimensionless = surface area of particles per unit volume of solid, L^2/L^3 = function = sphericity of particles = viscosity, $M\theta^{-1}L^{-1}$ μ = density, ML^{-3} = bed porosity ### References - BABU RAO, K., MUKHERJEE, S. P. & DORAISWAMY, L. K., A.I.Ch.E. Jl, 11 (1965), 741; 13 (1967), 397. FAN, L. T., YANG, Y. C. & WEN, C. Y., A.I.Ch.E. Jl, 5 (1959), 405; 7 (1961), 606; 9 (1963), 316. - KURIAN, J. & RAO, M. R., Indian J. Technol., 8 (1965), 275. - 4. ROY, G. K. & SARMA, K. J. R., Ind. Chem. Mfr, 12 (12) (1970), 14. - 5. ROY, G. K. & SARMA, K. J. R., Chem. Process Engng, 5 (3) (1971). - 6. ROY, G. K. & SENGUPTA, P., Br. chem. Engng, (in - 7. LEE, F. M. & NURSE, R. W., Permeability method of fineness measurement, paper presented at the Symposium on Particle Size Analysis, Institute of Chemical Engineers, London, 1947. - 8. SENGUPTA, P. & RAO, M. N., Indian chem. Engr, 13 (1). (1971), 11-16. - 9. LEVA, M., Fluidization (McGraw-Hill Book Co. Inc. New York), 1959.