Fast tracking of transient
power system signals using
fuzzy LMS algorithm

P K Dash®*, A C Liew?, D P Swain® and

B Mishra®

®Department of Electrical Engineering, National
University of Singapore, Singapore

°Centre of Intelligent Systems, Regional Engineering
College, Rourkela, India

The paper presents an adaptive least mean squares (LMS)gg\Lgaesleif?é%?éghgn '3 e\é?? nlov(\;’ Cb uct 0':; %ig?];;ni?cae |(I)S\;N
algorithm for the fast estimation of voltage and current y y ying d.c. P

signals in power networks. The new estimator is based on :{?;:ﬁ%&oﬁzgﬂ?égg;hiLh?hl‘eMSreir;dnSeLifaL?:gghir:S [o?]c
the use of linear combiners. The learning parameter of the b ying d.c.

proposed algorithm is constrained by two variable para- components and random noise. On the other hand, Kalman

meters which causes an automatic suitable adjustment of theﬂlterS are well suited for estimating time-varying signal

step size using a fuzzy gain scheduling method to provide fasﬁ%?rﬂiﬁgs\/:f?éiﬁ%é% thr?)t?ltreeni?/vr}?ﬁ tﬁgggllizlr%r;dn ;}ﬁgpso'
convergence and noise rejection for the tracking of funda- ) ' P

mental and harmonic components from distorted signals. is the high computational requirements, due to transcenden-

Several numerical tests have been conducted for the adap-tal function evaluation in real time. A Newton-type algo-

tive estimation of fundamental and harmonic components nLhan;o?Zi dbl(i)ecgl grosrt)grsne?r emuzr?cf:. [f?g)r;o aejits”t}z)?ttgdvv%':?agee
from simulated waveforms from power networks supplying b y N y 9

converter loads and switched capacito d waveform. This algorithm, however, suffers from a heavy
red computational burden and the ch0|ce of initial starting
- parameters. A few algorithms using the neural network
[6,7] approach have been presented to recover fundamental
components from signals corrupted by noise and harmonics.
However, these algorithms are susceptible to errors due to
random noise and involve heavy computational overheads.
l. Introduction The purpose of this paper is to present a new algorithm for
The problem of estimating the amplitudes, phase angles andthe fast tracking of voltage and current phasors using an
frequencies of sinusoidal signals from noisy and distorted adaptive linear combiner [8] which is analogous to a one-
data has received considerable attention recently due to thdayer neural network. The structure is based on the early
proliferation of power electronic loads in electric power work of Widrow and Lehr in the 1960s [9] and has been
networks. Further, the estimation of basic parameters of widely applied in neural networks, signal processing and
voltage and current signals is a prerequisite for evolving many other areas. A generalized weight adaptation algo-
suitable protection and control strategies of power networks. rithm for the adaptive linear combiner is used to arrive at the
Power quality issues are very much dependent on the RMSmagnitude and phase of the voltage or current phasor. In this
amplitudes of these waveforms, and hence suitable analysisalgorithm, the learning parameters are adjusted to force an
methodologies and measurement tools are assuming somerror between the actual and desired outputs in order
importance in the power industry. to satisfy a stable difference error equation, rather than to
With the introduction of microcomputers, the digital minimize an error function. This approach allows one to
monitoring of voltage and current phasors in a power network better control the stability and speed of convergence by an
has become feasible. The discrete Fourier transformationappropriate choice of parameters of the error difference
(DFT), least mean squares (LMS), recursive least squaresequation [8]. The algorithm presented in this paper is an
(RLS), and Kalman filter techniques [1—4] are some of the adaptive one and is based on the assumption that the
known signal processing techniques used for the estimationfrequency of the fundamental voltage or current phasor is

of voltage and current phasors. The computational cost of aknown a priori. A fuzzy logic based learning parameter
computation is used to provide fast convergence and noise

rejection. Several numerical examples are given in the paper
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to validate its performance in the presence of random noiseln this the input vector to the adaline is expressed as

and harmonics.

Il. Adaptive linear combiner

The power system voltage or current waveform is assumed

to comprise fundamental and harmonic components, as

N
y) =D A sin(iot+ ) (1)
i=1

whereA; and¢; are the amplitude and phase of the harmo-
nics, respectivelylN is the total number of harmonics, aad

is the angular frequency of the fundamental component of

the signal. To obtain a solution for on-line estimation of the

T
x(K) = (12 sing cosé ... sinNf cos\w> (6)
w

The weight vector of the linear combiner is updated using a
non-linear weight adaptation algorithm (modification of the
Widrow—Hoff delta rule), as

ae(k)X(K)
A+ X (K)X(K) 0

where the following hold good at tH¢h sampling instant:

(k4 1) = W(K) +

k is the input vector

harmonics, we propose the use of an adaptive estimator inT(k) — [WA(K) Wa(K) Wa(K) Wa(K) ... Wng + 1(K) Won -+ 2(K)];

the form of a linear combiner, shown in Figure 1.
To obtain the input variables for the linear combiner, the
signal given in the equation is written in the discrete form as

y(K) = A; cos¢ sinf + A; sin ¢ cosf
+ ... +Ay cosgy SINNG + Ay sin ¢y cosNE
2
where
_ 27k
NS

Inthe above equationlis the order of the highest harmonic
present in the signak is the sample number or iteration
count, and\ is the sample rate.

Thus, the input vector to the linear combiner is given by

X(K) = (sin cosf sin 2 cos @ ... sinNf cosNO)T  (3)

andT is the transpose of the quantity.
If the power system signal contains a decaying d.c.
component and the waveform is described by

0

N
y)=Agce "+ D A sin(iot+¢) 4)
i=1

the signal is expressed using a Taylor series expansion

(neglecting higher order terms) as

N
YO =Age— AgBt+ D A sin(ict + ¢) (5)
i=1
W,
w, Y(k)
x2 />®Z +
x (k)—> W3 5
X3 %

e(k)

Weight .
Updation
Algorithm

Figure 1. Block diagram of linear combiner

e(k) =y(k) — y(K)isthe

y(K) is the actual signal amplitude;

Y(K) is the estimated signal amplitude;

o is a learning parameter;

\ is a parameter to be suitably chosen to avoid division by
zero.In the above equation the veckois chosen as

X(K) =[11SGNsin )SGNcos#6)

... SGN(sin N§)SGNcosN®g)] " (8)
and theSGNfunction is given by
+1if x>0
SGNXi):{ _1ifx <0 ®)

wherei =3, ..., 2N + 2Instead of using th&GNfunction,
we can use the tanh or arc(tanh) functionsXgk).

The errore(k) between the actual signal and the estimated
signal is brought down to zero when perfect learning is attained
and the weight vector will yield the Fourier coefficients of the
signal. IfW, is the weight vector after the final convergence is
reached, the Fourier coefficients are obtained as

Wo = [AdcBA4cAL COSo; Ag Singy

... Ay cospy Ay singy]" (10)
The amplitude and phase of thith harmonic are given by

Aw = /WE(2N + 1) + WE(2N +2) and gy =tan™ >
Wo(2N + 2)
Wo(2N + 1)

For tracking three-phase voltage and current phasors, three
adaptive linear combiners will be required, as shown in
Figure 2.

11

lll. Fixing the learning parameter «

The learning parametet used in the modified Widrow—
Hoff delta rule is an important parameter which controls the
convergence and noise rejection property of the adaptive
linear combiner. The learning parameter is adapted
recursively in the following way.

a(k+1) = a(k) + u SGN V(K + 1)]Ac 1 (12)
where
2
V.2 D)= 9 (k+1)  9e’(k+1) oW(k+1) (13)

o WkK+1)  da
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Figure 2. Block diagram of the linear combiner used for tracking three-phase voltages and currents

In the above equation (equation (13))is a small positive the fuzzy subsets zero, very small, small, medium, large and

constant that controls the adaptive behaviour of the step sizevery large, respectively. The membership functions of the

The termAcx, ; of the same equation is explained in detail in  fuzzy variablegJ(k) andAc«(n) with respect to the linguistic

the next section. variables are shown in Figure 3. The above fuzzy rules are
The initial value of« is chosen to be 2.0. The learning aggregated by an OR operation given by

parametet is, however, constrained to lie between the limits R=R, UR, UR; UR, UR; URq

Umin = a(k+ 1) = Omax (14) Thei ; ; ;
e inference mechanism of the fuzzy logic based algorithm
The value ofa gy is chosen to ensure that the mean square produces a fuzzy outpuic(n) from which the crisp value of
error of the algorithm remains bounded. A sufficient condi- Ac«(n) is obtained through a defuzzification procedure. The
tion to ensure mean squared convergence of the algorithm isoutput of the FL block is computed by

max = % (15) Z TiAq;
r(R) Aa(n)= ———— (16)
whereR is the autocorrelation matrix of the input vecor Z Ti
|

given by
T wherer; is the firing strength of thih rule andAa(n) is the
R=E[X(k+ D)X (k+1)] centre of gravity of the output fuzzy subset of fitie rule.
The amin is chosen to provide a minimum level of step size The computing process being very simple does not affect the
without making system tracking very sluggish. The step size simplicity of the linear combiner. _ _
is always positive. For large prediction error, the learning  The power system signal model presented in equation (4)

parameter is increased to provide faster tracking. does not show any noise term. Thus, if a random noise is
added to the signal model, the accuracy of the linear
IV. Calculation of Aa combiner will be affected in the presence of the random

noise. Therefore to provide a better noise rejection term, the
error term is fed back recurrently and the input to the linear
combiner will, for the model containing a d.c. component
and harmonics, become

The change of the step sizae(n) is computed by using a fuzzy
logic based algorithm. The input and output of the fuzzy
system are quantitative measures of misadapffopand the
change of the step siz&x(n), respectively. Inside the fuzzy o
logic (FL) block, they are converted into, and treated as, fuzzy 7 ; _
variables, although they have crisp values. Here in this paper (k)= [1w Sing cosf ... sinNY cosNg eflje(k —1)

the norm of cross-correlation between the estimation error and ek—2)" 17
the input data as a measure of misadog)tidmd,SNhereUklz is

the magnitude of the gradient vecloge“(k).

Ui = lle(k) X (K V. Simulation results
The linguistic control rules are as given below. In order to check the validity and performance of the
proposed algorithm, numerical experimentation on the
Ry IF U(K) is ZE THEN A«(n) is ZE simulated waveforms has been carried out using
Ry: IF U(K) is VS THEN Ax(n) is VS the maTLAB software package. The simulations fully
Ry IFU(k)is S THENA«(n) is S confirmed the correctness of the presented approach. The
Ry IF U(k) is M THEN Ax(n) is M linear combiner algorithm is initialized by starting from a
Rs: IF U(k) is L THEN A«(n) is L null weight vector. A sample rate of 64 based on the 50 Hz
Re: IF U(k) is VL THEN A«(n) is VL frequency is chosen for the estimation of signal amplitude

and phase for all the studies. Owing to limited space, we
The linguistic variables ZE, VS, S, M, L and VL represent are presenting some illustrative results in order to show
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Figure 4. Tracking a distorted signal under conditions of sag, swell and outage



the accurate tracking capability of the FLMS (fuzzy LMS) 2-10 cycles. The swell is characterized by the voltage rise of

estimator.

V.1 Case 1

the unfaulted phase (to a value nearly 120% of the funda-
mental component) and outage is characterized by zero
voltage on the faulted phase. From the figure it is observed

Figure 4 shows the typical voltage waveform (short-duration that the linear combiner provides fast tracking of the peak
RMS variations in the voltage waveform) encountered for a voltage magnitudes and the fundamental voltage waveform
distribution feeder during a single-line to ground fault. The very accurately inlessthan 1 cycle. The variation & also
depression of voltage is usually known as sag, which has ashown in this figure. This example clearly demonstrates the
maghnitude around 80% of the fundamental and a duration of feasibility of using a linear combiner and fuzzy LMS
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Figure 5. Tracking of fundamental and harmonic components



algorithm for power quality monitoring. An optimized
Kalman filter is used to provide a meaningful comparison

with the new approach presented in this paper. The Kalman

filter shows overshoots and a larger settling time in compar-
ison to the linear combiner—fuzzy LMS approach. The figure
also shows the membership grades of the changpin (k)]

and the actual value af. The fuzzy output for producing the
change inx is either zero or 1 and the actual valuecofs
calculated according to equation (12).

V.2 Case 2

value to a large value during the fault period. Such a signal is
represented as

y(t) = 1.5 sin(wt + 29.3°) + 0.5 exy( — 15t)
+ 0.2 sin(5wt + 1416°) + 0.017 sir(7wt + 86.2°)
+0.022 sir{11lwt — 99.4°)
+0.024 sir{130t — 1792°)
+0.012 sir{17wt — 1.3°) + 0.016 sir{1%t — 89.6°)

: . . . . + K rand(t)
The signal that is of considerable importance in power
networks is the fault current, which changes from its nominal whereK =0.05.
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The value ofK is set at 0.05 for this study, which is fuzzy LMS algorithm yield a more accurate and faster
equivalent to superimposing a 0.2 p.u. peak noise level onestimation of voltage phasor in comparison with the well-
the faulted current signal. The functisand(t) has a zero known Kalman-filter-based algorithm.
mean, normal distribution and variance unity.

Figure 5 shows the tracking of the fundamental and fifth
harmonic components of the distorted signal presentedVIl. Acknowledgements

above using both the fuzzy LMS algorithm and the The authors acknowledge funds from the DST for under-

Kalman filter. From the figure it can be seen that in the taking this project on neural network applications in power
presence of a decaying d.c. and harmonics, the Kalman filterengineering.

shows a larger error and converges to the true value slowly in

more than four cycles. However, using the fuzzy LMS
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