
A TABU BASED NEURAL NETWORK TRAINING 

ALGORITHM FOR EQUALIZATION OF 

COMMUNICATION CHANNELS 

 
Prof. J. K. Satapathy*, K. R. Subhashini** 

Department of Electrical Engineering  

National Institute of Technology 

Rourkela-769008                                

India 
 

 
 

Abstract : This paper presents a new approach to 

equalization of communication channels using Artificial 

Neural Networks (ANNs). A novel method of training the 

ANNs using Tabu based Back Propagation (TBBP) 

Algorithm is described.  The algorithm uses the Tabu 

Search (TS) to improve the performance of the equalizer 

as it searches for global minima which is many a time 

escaped while Back Propagation (BP) algorithm is 

applied for this purpose. From the results it can be noted 

that the proposed algorithm improves the classification 

capability of the ANNs in differentiating the received 

data. 
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1. Introduction 

 
       The Back Propagation (BP) Algorithm revolutionized 

the use of Artificial Neural Networks (ANNs) in diverse 

fields of science and engineering, such as pattern 

recognition, function approximation, system 

identification, data mining, time series forecasting etc. 

These ANNs construct a functional relationship between 

input and output patterns through the learning process, and 

memorize that relationship in the form of weights for later 

applications [1,2].This BP algorithm belongs to the family 

of Gradient-based algorithms and they provide an easy 

way of supervised learning in multilayered feed forward 

ANNs. The method of gradient descent [3] is that a 

downhill movement in the direction of the negative 

gradient will eventually reach the minima of the 

performance surface over its parameter space. Since the 

gradient techniques converge locally, they often get 

trapped at suboptimal solutions [4] depending on the 

serendipity of the initial random starting point. Since 

obtaining a global solution is the main criterion of any 

adaptive system, an efficient search technique is highly 

desirable for such difficult nonlinear optimization 

problem.  
 

The popularity of Tabu search has grown significantly in 

the past few years as a global search technique. The roots 

of the Tabu search go back to 1970’s; it was presented in 

its present form by Glover [5, 6]. This technique is 

famous in solving many combinatorial problems like the 

traveling salesmen problem, design optimization, and the 

quadratic assignment problem. In this paper it is proposed 

to apply this technique to find the so called optimal values 

of the ANN parameters with reference to equalization of 

communication channels. In section 2 the process of 

equalization is discussed. In section 3 a brief introduction 

to neural networks and its training using BP algorithm is 

presented. In section 4 proposed algorithms of using TS 

for training the ANNs is described. Section 5 is dedicated 

for discussion and experimental results.  
 

2.  Channel Equalization   
The two principal causes of distortion [7] in a digital 

communication channels are Inter Symbol Interference 

(ISI) and the additive noise. The ISI can be characterized 

by a Finite Impulse Response (FIR) filter [8, 9]. The noise 

can be internal  or additive to the system. Hence at the 

receiver the distortion must be compensated in order to 

reconstruct the transmitted symbols. This process of 

suppressing channel induced distortion is called channel 

equalization. The equalization in digital communication 

scenario is illustrated in Fig.1, where )(ks is the symbol 

sequence transmitted through the channel. )(kN  

represents Additive White Gaussian Noise (AWGN). 

)(kr is the received data and )(ˆ dks  is an estimate of 

the transmitted data. d is called the decision delay. 

                           

 
Fig. 1. Schematic of a Digital Communication System 

 

The channel can be modeled as an FIR filter with a 

transfer function 
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where an  is the length of the communication channel 

impulse response. The symbol sequence )(ks  and the 

channel taps ia  can be complex valued. In this study, 

however, channels and symbols are restricted to be real 

valued. This corresponds to the use of multilevel pulse 



amplitude modulation (M-ary PAM) with a symbol 

constellation defined by 

 ,12  Misi     Mi 1           (2.2) 

Concentration on the simpler real case allows us to 

highlight the basic principles and concepts. In particular, 

the case of binary symbols (M = 2) provides a very useful 

geometric visualization of equalization process. The task 

of equalizer is to reconstruct the transmitted symbols as 

accurately as possible based on the noisy channel 

observations )(kr . Various equalizers can be classified 

into two categories, namely, the symbol-decision 

equalizer and the sequence-estimation equalizer. The later 

type is hardly used as it is computationally very 

expensive. The symbol-decision equalizers in its initial 

stages were implemented using Linear Transversal 

Filters. Later the advent of ANN’s marked the modeling 

of equalizers which can provide superior performance in 

terms of Bit Error Rate (BER) compared to FIR 

modeling. It has been noted that the BER performance of 

the equalizer are influenced by many factors which 

include the additional noise level, the equalizer order, the 

decision delay, number of samples used for training, and 

the neural network structure we have considered. It is 

noted in  that, for some channels classification is not 

possible without feedback as they may have overlapping 

states and also seen that the BER performance of the 

equalizer improves with the inclusion of feedback. Hence 

we get one more factor influencing the classification 

capability of the equalizer. So, we can say that the 

principal parameters that affect the equalizer’s BER 

performance are additional noise level, Equalizer 

order m ,Feedback order bn  ,Decision delay d  As SNR 

increases, the problem of classification becomes easier. 

The effect of equalizer order is directly related to Covers 

Theorem[10] . This theorem on the separability of 

patterns, which, in qualitative terms, may be stated as 

follows, 
 

 “A complex pattern-classification problem cast in 

a high-dimensional space nonlinearly is more likely to be 

linearly separable than in a low-dimensional space.” 
 

According to this theorem, as we move to higher 

dimensional space, classification becomes easier. 

Observations say’s that for an equalizer, with a fixed 

value of decision delay an equalizer order of 1 dm is 

sufficient [11]. Also with the introduction of Decision 

Feed Back.(DFE) in the equalizer number of states 

decreases, hence performance increases as there is an 

increase in margin existing between states.  

 

3.  Decision Feedback Neural Network 

Equalizer 

 
 A neural network based equalizer  with out DFE, 

outperforms the Linear Transversal filters in terms of 

BER as most of the communication channels requires 

nonlinear decision boundary [10]. In the figure 

)(kr represents received signal. The structure constitutes 

three significant parts- one input layer, a set of hidden 

layers, one output layer. All the nodes are interconnected 

by the weights
l

ijw , where i represents the destination 

node and j  represents the source node. The superscript 

l  gives the layer number. An equalizer of order 

m implies that it has m input nodes in its input layer as 

shown in the figure. An equalizer will have a single node 

in its output layer. The signal received sequentially is 

allowed to propagate through the hidden layers up to the 

output layer [ 10]. The output of the each node 
l

iy  is the 

weighted sum of outputs of all the nodes in the previous 

layer and affected by the activation function, which here 

is the hyperbolic tangent function. Mathematically the 

forward propagation of the neural network is given by 

[10].  
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where 
l

iv  is called the induced local field or activation 

potential of node i in layer l  and 1lN is the number of 

neurons in the layer )1( l . 

The structure of the decision feedback neural network 

equalizer is shown in Fig. 2 It can be noted from figure 

that it is very much similar to the simple neural network 

equalizer except the inclusion of additional taps for 

feedback elements. This feedback is called decision 

feedback as we are feeding back the previous decisions. 

Number of feedbacks included is called feedback 

order bn . Then the number of additional delay element 

required is 1bn . 

 
    

  Fig. 2 Decision Feedback Neural Network Equalizer 

 
Hence, now, the total number of nodes in the input layer 

becomes bnm  .in the absence of feedback number the 

transmitted symbols that influence the equalizer decision 

are  

 

 2(),......,1(),(  anmksksks                 (3.3) 

 



Thus the channel input sequence has 
1

2


 anm

sn  

combinations among which  2/sn  constitute centers 

belonging to symbol +1 and the remaining 2/sn are for 

centers corresponding to symbol -1. Hence here all the 

sn states are required for decision making. If we include 

feedback then the number of transmitted symbols that 

influence the equalizer performance are  
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                                                                      (3.4) 

Hence the feedback vector has bn

fn 2 states. As a 

result of feedback, only a fractional number of these 

states, fs nn / are needed for decision making. It can be 

noted that it is sufficient to employ a feedback order bn , 

given by [10] 

     dmnn ab  2              (3.5)                                     

However, the parameters bndm ,, are interdependent an 

equalizer order of 1 dm is sufficient, any value more 

than this will not give an appreciable increase in 

performance. From Eqn. 3.3,   

                             dmnn ab  2            (3.6) 

                  

Hence substituting 1 dm in above equation we get, 

   1 ab nn             (3.7) 

                                           

i.e. a proper combination of these parameters, for a chosen 

channel order, is required to obtain a better performance 

(near optimal) of the equalizer. 

 

3.1  Back Propagation Algorithm 
The BP algorithm consists of two passes through the 

different layers of the network: a forward pass and a 

backward pass [12]. The forward pass is mentioned 

earlier. In the backward pass the error signal, which is 

obtained by comparing the output of the node in the 

output layer with the desired response, is allowed to 

propagate against the direction of synaptic weights (hence 

the name back propagation algorithm) and local 

gradients
l

i at each node is computed using  the 

following relation 
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Due to the lack of availability of desired response at the 

hidden layers, it is not possible to compute the error at 

these nodes. Hence this local gradient is very important in 

providing the error measure at the hidden nodes. Using 

these local gradients the synaptic weights are updated as 

shown below. 
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The weight correction 
l

jiw is added to the present weight 

after each iteration. The weights are updated till the mean 

square error (MSE) falls below some chosen threshold or 

when maximum number of iterations are completed. The 

BP algorithm revolutionized the use of ANNs in diverse 

fields of science and engineering, such as pattern 

recognition, function approximation, system 

identification, data mining, time series forecasting etc. 

These ANNs construct a functional relationship between 

the input and output patterns through the leaning process 

and memorize that relationship in the form of synaptic 

weights for later applications. i.e., only the weights are 

adaptable parameters. But the main source of nonlinearity 

introduced in the ANN structure is the use of Activation 

Function at each node. The most commonly used 

activation functions are the Sigmoid Function and the 

Hyperbolic Tangent Function. In this paper the later one is 

used which is defined as 
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Where a  is the slope of the activation function. Earlier all 

the applications which use ANNs used a fixed value for 

the slope (which is 1 in most cases). But this value, in 

many cases, may not be the optimum value for the chosen 

set of synaptic weights. Hence adapting the slopes 

together with the weights will improve the neural network 

behavior. 
 

In this paper it is demonstrated that adapting the slopes 

provides superior performance with a reduced structure 

for the ANN. Any gradient based method like BP 

algorithm can be used for adapting the slopes. But suffer 

from two drawbacks this is because the use of gradient 

based methods has the problem of converging locally and 

hence often get trapped at sub optimal solutions 

depending on the serendipity of the initial random starting 

point . Hence an efficient search technique is highly 

desirable for such difficult nonlinear optimization 

problem. Tabu Search (TS) has been used to choose the 

proper value for the slopes. The popularity of TS has 

grown significantly in the past few years as a global 

search technique. 
 

4.   Tabu Based BP (TBBP) Algorithm 
 

In this section first a short description to the Tabu search 

(TS) algorithm is presented and then the proposed 

algorithm of using TS with Back Propagation is discussed. 
 

4.1 Tabu Search 
Tabu search can be thought as an iterative descent 

method. An initial solution is randomly generated and a 

neighborhood around that solution is examined. If a new 

solution is found in the neighborhood that is preferred to 

the original, then the new solution replaces the old and the 

process repeats. If no solution is found that improves upon 

the old function evaluation, then unlike a gradient descent 

procedure which would stop at that point (a local minima), 

the TS algorithm may continue by accepting a new value 

that is worse than the old value. Therefore a collection of 

solutions in a given neighborhood is generated and the 



final solution would be the best solution found so far for 

that particular neighborhood. To keep from cycling, an 

additional step is included that prohibits solutions from 

recurring (hence the name Tabu) for a user defined 

number of solutions. This Tabu List (TL) is generated by 

adding the last solution to the beginning of the list and 

discarding the oldest solution from the list. During this 

procedure, the best solution found so far is retained. If the 

new generated weight is not in the TL, the search goes on 

and the weight is added to the TL.To reject any solution, 

all the weights must be within the Tabu Area (TA) of any 

entry in the TL. The Aspiration Criterion (AC) is used to 

activate the solutions that are tabued but around which 

there are some superior solutions. 
 

4.2 The TBBP 
 

The TBBP can be divided into two steps - the Superficial 

Search (SS) and the Deep Search (DS). In the SS , hunt 

for the solution which has the higher probability of 

finding good global solutions. The DS trains these 

solutions, found in SS, to find the best solution in the 

neighborhood of the solution. The original weight 0W is 

randomly generated, where 0W include all the weights of 

the neural network. The SS trains this original weight to a 

state, 
'

0W a point in the local minima, but is not at the 

bottom of the concave [4]. If the point is in TL, then this 

is considered to be in a searched concave and is not 

considered for DS. 

There may be some 
'

iW s, where ,...2,1,0i  which may 

be in the searched concave but may satisfy 

                  )()1()( '

bi EACE WW   or 

                  )()1()( '

bi EACE WW             (4.1)

  

where )( '

iE W is the sum of error evaluated at the 

superficial state
'

iW  and bW is the best solution found so 

far. 

The above equation is called the AC and is used to 

activate some of the tabued solutions. The solution 

obtained in the SS is further searched, called DS, in its 

neighborhood.  
 

4.2.1  Steps involved in TBBP 
 

Here the basic steps involved in the algorithm are 

discussed. It mainly consists of  7 steps. 

(1) Generate an initial solution iW , ...2,1,0i . 

(2) Superficial search:  

(i) The initial weight is trained with BP algorithm to 

obtain Superficial state 
'

iW  and )( '

iE W . 

(ii) If this solution is in TL and does not satisfy AC 

then go to step (1) to generate new solution. 

(iii) Else add the solution to the TL and go to step (3) 

for DS. 

(3) Deep Search: 

(i) Deeply search 
'

iW  and get the corresponding 

deep state 
''

iW and get its corresponding 

 )( ''

iE W . 

(ii) If )( ''

iE W < )( bE W then set bW =
''

iW  

        and )( bE W = )( ''

iE W . 

(4)   Generate a new solution
'

ijW in the neighbor-hood of 

'

iW and evaluate )( '

ijE W . 

(5) If this new superficial solution 
'

ijW  is in TL and does 

not satisfy AC then go to step(4) to generate a new 

neighbor,  else add 
'

ijW  to TL and go to next step. 

 

(6) Deeply search
'

ijW similar to step (3) and update  the 

best solution if the squared error obtained in this deep 

search is less than the best error square till now. If j  

is less than maximum number of neighborhood 

searches go to step (4). Or else finalize bW as the 

best solution . 

 

 The superior performance, in terms of BER, of this 

algorithm can be noted in the last section . 

 
 

4.3  SLOPE ADAPTATION USING TS 
 

As mentioned earlier, the concept of adaptation 

of slopes of the activation functions can be implemented 

in two ways. Algorithm-1 describes the first method in 

which the weights are adapted first using BP and then 

fixing these we use TS for slope adaptation. Algorithm-2 

describes the second method of adapting the slopes, where 

both the synaptic weights and the slopes are adapted in 

each iteration. This method of slope adaptation also 

requires maintaining the Tabu List (TL), to keep track of 

the regions already searched. We start by choosing some 

random values to slopes. It is similar to weight adaptation 

which includes two parts- Deep Search (DS) and 

Superficial Search (SS).In this process an initial set of 

weights and slopes are randomly generated. The initial set 

of slopes is given by )0( . In the SS we will obtain the 

best set of slopes )0(b . Then this solution is further 

searched using the DS. In the DS we generate random 

solutions in its neighborhood and the squared error is 

calculated and the best solution is chosen. 

 

Algorithm-1 

The basic steps involved in the algorithm are 

1. Generate an initial set of synaptic weights 

)0(W and initialize the slopes of all the 

activation functions to unity. 

2. Update the slopes using BP algorithm as 

explained in section 2.2 

3. Now freeze the weights and start the Superficial 

Search: 

i. Initialize some variable, 0x  

ii. Now, assign some random values, 

within the chosen range, to the set of 

slopes )(i , ....2,1,0i  

iii. Compute ))(( iE  , i.e. squared error. 



iv. If this solution is in TL and if 0x or 

if ))(())(( iEiE b  then increment 

x go to step 3(ii). 

v. Else add )(i to TL and set 

)()( iib  and 

))(())(( iEiE b  . 

vi. If x is less than MAX number of 

iterations, increment x and go to 

step 3(ii), else  start DS 

4. Now Deep search: 

i. Initialize a variable 0x  

ii. Generate the new solution 

)(in  in the neighborhood of 

)(ib  

iii. Compute ))(( iE n . 

iv. If the solution is in TL or if 

))(())(( iEiE bn  increme

nt x and go to step 4(ii). 

v. Else set )()( ii nb  and 

))(())(( iEiE nb   

vi. If x is less than MAX number of 

iterations, increment x and go to 

step 4(ii), else go to step 5. 

5. If i is less than maximum neighborhood 

searches, go to step 3. 

6. Else choose the best among all the best 

solution obtained. 
 

The results obtained using this algorithm is explained in 

the next section. The algorithm has some practical 

limitations. It is not so suitable for real time applications 

as it needs to maintain a memory for the training data to 

compute the error square its DS. Hence a more useful 

algorithm is formulated which will be more useful for real 

time applications. In this algorithm starting from the time 

instant 0k , the mean square error is computed over the 

data received till the present instant. The algorithm can be 

explained as follows. 
 

Algorithm-2 
The basic steps of this algorithm is explained below. 

1. Generate an initial set of synaptic weights 

)0(W and slopes )0( . 

2. Forward propagate the input sequence and 

compute the error at the output node. 

3. Back propagate the error and compute the local 

gradient at each node to get the vector δ(i), which 

is the set of local gradients of all the nodes at the 

iteration i. 

4. Update the weight using weight update equation  

 )1()( ii WW  δ(i) )(iy        (4.2)  

where )(iy is the set of output vector of all the nodes 

(including input layer). 

5. Deep Search: 

i. Initialize some variable 0x  

ii. Generate a new solution )(in in the 

neighborhood of )(i  

iii. Compute the mean square error 

))(( iE n using the data received till now. 

iv. If )(in is in the TL and if 0x or if 

))(())(( iEiE bn  , increment x and 

go to step 5(ii). 

v. Else add )(in to TL and set 

)()( ii nb  and 

))(())(( iEiE nb   

vi. If x is less than MAX number of 

neighborhood searches, increment x and go 

to step 5(ii), or else go to step 6. 

6. If i is less than maximum number of iterations, 

increment i  and go to step 2 else to step 7. 

7. Choose the best solution among all the )(ib ’s. 

This algorithm is more suitable for practical applications, 

as it uses the present data received to update the weights 

and also to compute the mean square error in the TS 

process to adapt the weights. 
 

5.  Experimental Results 
 
In this section the experimental results are taken into 

account in order to compare the performance of the 

equalizer trained using BP and TBBP. Both the BP and 

TBBP algorithms are written in C and compiled using 

Microsoft VC++6.0. The plots have been taken using 

Microsoft Excel 2003. The channels considered for 

equalization has the following transfer functions.  

 
1

1 5.00.1)(  zzH ,  
21

2 4084.08164.04084.0)(   zzzH , 
321

3 8.00.18.035.0)(   zzzzH , 

4321

4 0.14201.05684.03841.09413.0)(   zzzzzH    

                 

[12, 13, 14] For this experiment a simple three layered 

neural network with decision feedback is considered. The 

equalizer order is chosen to have 5,3,2m , feedback 

order 4,2,1bn , decision delay 4,2,0d and in the 

hidden layer only one node is considered to design an 

efficient and compact equalizer with an objective to 

appreciate the superior performance of TS even with this 

very small structure The plots are obtained by testing the 

equalizer with 
610  samples. In TBBP, algorithm 50 

superficial states have been searched and 100 neighbor 

solutions are generated in the neighbor-hood of each 

superficial state. But BP algorithm based neural network 

is trained with 2000 samples. 

 
 



   Fig: 3 SNR Vs BER plot for BP and TBBP for H1(Z)   
                                           

 

 
 

 Fig: 4 SNR Vs BER plot for BP and TBBP for H2(Z) 

 

 
  Fig: 5 SNR Vs BER plot for BP and TBBP for H3(Z) 

 
 
 Fig: 6 SNR Vs BER plot for BP and TBBP for H4(Z) 

 

To obtain similar performance for the H4(z) channel BP 

algorithm needs a more complex structure. In Fig7 it is 

shown that for the similar performance the BP algorithm 

needs 6 nodes in its hidden layer. 

 

 

 
 

          Fig: 7 SNR Vs BER plot for BP and TBBP for H4(Z)     
 

For a BP algorithm, it needs 6066)45(   

adjustable parameters (weights) to obtain the similar 

performance that a TBBP algorithm gives with just 

1011)45(   weights, i.e. the proposed TBBP 

algorithm reduces the required number of adjustable 

parameters from 60 to 10. 

                                                                                                 

6.   Conclusion 

 
In this paper we propose a novel method of training a 

neural network using TBBP is proposed. The principal 

advantages of using the Tabu search is that it can jump out 

of the local minima by extending its search into the global 

space. Another advantage is that it avoids the searched 

concaves effectively and hence time saving. This paper 

presents the efficiency of the search, algorithm together 

with the neural network in improving the performance of 

the equalizer even with a simple structure. 
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