
A TABU BASED NEURAL NETWORK TRAINING

ALGORITHM FOR EQUALIZATION OF

COMMUNICATION CHANNELS

Prof. J. K. Satapathy*, K. R. Subhashini**

Department of Electrical Engineering

National Institute of Technology

Rourkela-769008

India

Abstract : This paper presents a new approach to

equalization of communication channels using Artificial

Neural Networks (ANNs). A novel method of training the

ANNs using Tabu based Back Propagation (TBBP)

Algorithm is described. The algorithm uses the Tabu

Search (TS) to improve the performance of the equalizer

as it searches for global minima which is many a time

escaped while Back Propagation (BP) algorithm is

applied for this purpose. From the results it can be noted

that the proposed algorithm improves the classification

capability of the ANNs in differentiating the received

data.

Keywords : Artificial Neural Networks, Tabu Search,

Local Minima, Global Solution, Decision Feed Back,

Aspiration Criterion.

1. Introduction

 The Back Propagation (BP) Algorithm revolutionized

the use of Artificial Neural Networks (ANNs) in diverse

fields of science and engineering, such as pattern

recognition, function approximation, system

identification, data mining, time series forecasting etc.

These ANNs construct a functional relationship between

input and output patterns through the learning process, and

memorize that relationship in the form of weights for later

applications [1,2].This BP algorithm belongs to the family

of Gradient-based algorithms and they provide an easy

way of supervised learning in multilayered feed forward

ANNs. The method of gradient descent [3] is that a

downhill movement in the direction of the negative

gradient will eventually reach the minima of the

performance surface over its parameter space. Since the

gradient techniques converge locally, they often get

trapped at suboptimal solutions [4] depending on the

serendipity of the initial random starting point. Since

obtaining a global solution is the main criterion of any

adaptive system, an efficient search technique is highly

desirable for such difficult nonlinear optimization

problem.

The popularity of Tabu search has grown significantly in

the past few years as a global search technique. The roots

of the Tabu search go back to 1970’s; it was presented in

its present form by Glover [5, 6]. This technique is

famous in solving many combinatorial problems like the

traveling salesmen problem, design optimization, and the

quadratic assignment problem. In this paper it is proposed

to apply this technique to find the so called optimal values

of the ANN parameters with reference to equalization of

communication channels. In section 2 the process of

equalization is discussed. In section 3 a brief introduction

to neural networks and its training using BP algorithm is

presented. In section 4 proposed algorithms of using TS

for training the ANNs is described. Section 5 is dedicated

for discussion and experimental results.

2. Channel Equalization
The two principal causes of distortion [7] in a digital

communication channels are Inter Symbol Interference

(ISI) and the additive noise. The ISI can be characterized

by a Finite Impulse Response (FIR) filter [8, 9]. The noise

can be internal or additive to the system. Hence at the

receiver the distortion must be compensated in order to

reconstruct the transmitted symbols. This process of

suppressing channel induced distortion is called channel

equalization. The equalization in digital communication

scenario is illustrated in Fig.1, where)(ks is the symbol

sequence transmitted through the channel.)(kN

represents Additive White Gaussian Noise (AWGN).

)(kr is the received data and)(ˆ dks  is an estimate of

the transmitted data. d is called the decision delay.

Fig. 1. Schematic of a Digital Communication System

The channel can be modeled as an FIR filter with a

transfer function

 





1

0

)(
an

i

i

i zazA (2.1)

where an is the length of the communication channel

impulse response. The symbol sequence)(ks and the

channel taps ia can be complex valued. In this study,

however, channels and symbols are restricted to be real

valued. This corresponds to the use of multilevel pulse

amplitude modulation (M-ary PAM) with a symbol

constellation defined by

 ,12  Misi Mi 1 (2.2)

Concentration on the simpler real case allows us to

highlight the basic principles and concepts. In particular,

the case of binary symbols (M = 2) provides a very useful

geometric visualization of equalization process. The task

of equalizer is to reconstruct the transmitted symbols as

accurately as possible based on the noisy channel

observations)(kr . Various equalizers can be classified

into two categories, namely, the symbol-decision

equalizer and the sequence-estimation equalizer. The later

type is hardly used as it is computationally very

expensive. The symbol-decision equalizers in its initial

stages were implemented using Linear Transversal

Filters. Later the advent of ANN’s marked the modeling

of equalizers which can provide superior performance in

terms of Bit Error Rate (BER) compared to FIR

modeling. It has been noted that the BER performance of

the equalizer are influenced by many factors which

include the additional noise level, the equalizer order, the

decision delay, number of samples used for training, and

the neural network structure we have considered. It is

noted in that, for some channels classification is not

possible without feedback as they may have overlapping

states and also seen that the BER performance of the

equalizer improves with the inclusion of feedback. Hence

we get one more factor influencing the classification

capability of the equalizer. So, we can say that the

principal parameters that affect the equalizer’s BER

performance are additional noise level, Equalizer

order m ,Feedback order bn ,Decision delay d As SNR

increases, the problem of classification becomes easier.

The effect of equalizer order is directly related to Covers

Theorem[10] . This theorem on the separability of

patterns, which, in qualitative terms, may be stated as

follows,

 “A complex pattern-classification problem cast in

a high-dimensional space nonlinearly is more likely to be

linearly separable than in a low-dimensional space.”

According to this theorem, as we move to higher

dimensional space, classification becomes easier.

Observations say’s that for an equalizer, with a fixed

value of decision delay an equalizer order of 1 dm is

sufficient [11]. Also with the introduction of Decision

Feed Back.(DFE) in the equalizer number of states

decreases, hence performance increases as there is an

increase in margin existing between states.

3. Decision Feedback Neural Network

Equalizer

 A neural network based equalizer with out DFE,

outperforms the Linear Transversal filters in terms of

BER as most of the communication channels requires

nonlinear decision boundary [10]. In the figure

)(kr represents received signal. The structure constitutes

three significant parts- one input layer, a set of hidden

layers, one output layer. All the nodes are interconnected

by the weights
l

ijw , where i represents the destination

node and j represents the source node. The superscript

l gives the layer number. An equalizer of order

m implies that it has m input nodes in its input layer as

shown in the figure. An equalizer will have a single node

in its output layer. The signal received sequentially is

allowed to propagate through the hidden layers up to the

output layer [10]. The output of the each node
l

iy is the

weighted sum of outputs of all the nodes in the previous

layer and affected by the activation function, which here

is the hyperbolic tangent function. Mathematically the

forward propagation of the neural network is given by

[10].

)(1

1

1
1





 


l

j

N

j

l

ij

l

i ywv
l

 (3.1)

l

iy =)(l

iv (3.2)

where
l

iv is called the induced local field or activation

potential of node i in layer l and 1lN is the number of

neurons in the layer)1(l .

The structure of the decision feedback neural network

equalizer is shown in Fig. 2 It can be noted from figure

that it is very much similar to the simple neural network

equalizer except the inclusion of additional taps for

feedback elements. This feedback is called decision

feedback as we are feeding back the previous decisions.

Number of feedbacks included is called feedback

order bn . Then the number of additional delay element

required is 1bn .

 Fig. 2 Decision Feedback Neural Network Equalizer

Hence, now, the total number of nodes in the input layer

becomes bnm  .in the absence of feedback number the

transmitted symbols that influence the equalizer decision

are

 2(),......,1(),( anmksksks (3.3)

Thus the channel input sequence has
1

2


 anm

sn

combinations among which 2/sn constitute centers

belonging to symbol +1 and the remaining 2/sn are for

centers corresponding to symbol -1. Hence here all the

sn states are required for decision making. If we include

feedback then the number of transmitted symbols that

influence the equalizer performance are

 )(ˆ)....1(ˆ,)2(),....1(),(aa ndksdksnmksksks 

 (3.4)

Hence the feedback vector has bn

fn 2 states. As a

result of feedback, only a fractional number of these

states, fs nn / are needed for decision making. It can be

noted that it is sufficient to employ a feedback order bn ,

given by [10]

 dmnn ab  2 (3.5)

However, the parameters bndm ,, are interdependent an

equalizer order of 1 dm is sufficient, any value more

than this will not give an appreciable increase in

performance. From Eqn. 3.3,

 dmnn ab  2 (3.6)

Hence substituting 1 dm in above equation we get,

 1 ab nn (3.7)

i.e. a proper combination of these parameters, for a chosen

channel order, is required to obtain a better performance

(near optimal) of the equalizer.

3.1 Back Propagation Algorithm
The BP algorithm consists of two passes through the

different layers of the network: a forward pass and a

backward pass [12]. The forward pass is mentioned

earlier. In the backward pass the error signal, which is

obtained by comparing the output of the node in the

output layer with the desired response, is allowed to

propagate against the direction of synaptic weights (hence

the name back propagation algorithm) and local

gradients
l

i at each node is computed using the

following relation

)()(
1

1

1 l

ji

N

i

l

i

l

j

l

j wv
l

 




 (3.8)

Due to the lack of availability of desired response at the

hidden layers, it is not possible to compute the error at

these nodes. Hence this local gradient is very important in

providing the error measure at the hidden nodes. Using

these local gradients the synaptic weights are updated as

shown below.










































































  l

i

l

j

l

ji y

ofneuron

linputsigna

gradient

local

parameter

telearningra

w

Correction

Weight

1

The weight correction
l

jiw is added to the present weight

after each iteration. The weights are updated till the mean

square error (MSE) falls below some chosen threshold or

when maximum number of iterations are completed. The

BP algorithm revolutionized the use of ANNs in diverse

fields of science and engineering, such as pattern

recognition, function approximation, system

identification, data mining, time series forecasting etc.

These ANNs construct a functional relationship between

the input and output patterns through the leaning process

and memorize that relationship in the form of synaptic

weights for later applications. i.e., only the weights are

adaptable parameters. But the main source of nonlinearity

introduced in the ANN structure is the use of Activation

Function at each node. The most commonly used

activation functions are the Sigmoid Function and the

Hyperbolic Tangent Function. In this paper the later one is

used which is defined as

ax

ax

e

e
x










1

1
)( (3.9)

Where a is the slope of the activation function. Earlier all

the applications which use ANNs used a fixed value for

the slope (which is 1 in most cases). But this value, in

many cases, may not be the optimum value for the chosen

set of synaptic weights. Hence adapting the slopes

together with the weights will improve the neural network

behavior.

In this paper it is demonstrated that adapting the slopes

provides superior performance with a reduced structure

for the ANN. Any gradient based method like BP

algorithm can be used for adapting the slopes. But suffer

from two drawbacks this is because the use of gradient

based methods has the problem of converging locally and

hence often get trapped at sub optimal solutions

depending on the serendipity of the initial random starting

point . Hence an efficient search technique is highly

desirable for such difficult nonlinear optimization

problem. Tabu Search (TS) has been used to choose the

proper value for the slopes. The popularity of TS has

grown significantly in the past few years as a global

search technique.

4. Tabu Based BP (TBBP) Algorithm

In this section first a short description to the Tabu search

(TS) algorithm is presented and then the proposed

algorithm of using TS with Back Propagation is discussed.

4.1 Tabu Search
Tabu search can be thought as an iterative descent

method. An initial solution is randomly generated and a

neighborhood around that solution is examined. If a new

solution is found in the neighborhood that is preferred to

the original, then the new solution replaces the old and the

process repeats. If no solution is found that improves upon

the old function evaluation, then unlike a gradient descent

procedure which would stop at that point (a local minima),

the TS algorithm may continue by accepting a new value

that is worse than the old value. Therefore a collection of

solutions in a given neighborhood is generated and the

final solution would be the best solution found so far for

that particular neighborhood. To keep from cycling, an

additional step is included that prohibits solutions from

recurring (hence the name Tabu) for a user defined

number of solutions. This Tabu List (TL) is generated by

adding the last solution to the beginning of the list and

discarding the oldest solution from the list. During this

procedure, the best solution found so far is retained. If the

new generated weight is not in the TL, the search goes on

and the weight is added to the TL.To reject any solution,

all the weights must be within the Tabu Area (TA) of any

entry in the TL. The Aspiration Criterion (AC) is used to

activate the solutions that are tabued but around which

there are some superior solutions.

4.2 The TBBP

The TBBP can be divided into two steps - the Superficial

Search (SS) and the Deep Search (DS). In the SS , hunt

for the solution which has the higher probability of

finding good global solutions. The DS trains these

solutions, found in SS, to find the best solution in the

neighborhood of the solution. The original weight 0W is

randomly generated, where 0W include all the weights of

the neural network. The SS trains this original weight to a

state,
'

0W a point in the local minima, but is not at the

bottom of the concave [4]. If the point is in TL, then this

is considered to be in a searched concave and is not

considered for DS.

There may be some
'

iW s, where ,...2,1,0i which may

be in the searched concave but may satisfy

)()1()('

bi EACE WW  or

)()1()('

bi EACE WW  (4.1)

where)('

iE W is the sum of error evaluated at the

superficial state
'

iW and bW is the best solution found so

far.

The above equation is called the AC and is used to

activate some of the tabued solutions. The solution

obtained in the SS is further searched, called DS, in its

neighborhood.

4.2.1 Steps involved in TBBP

Here the basic steps involved in the algorithm are

discussed. It mainly consists of 7 steps.

(1) Generate an initial solution iW , ...2,1,0i .

(2) Superficial search:

(i) The initial weight is trained with BP algorithm to

obtain Superficial state
'

iW and)('

iE W .

(ii) If this solution is in TL and does not satisfy AC

then go to step (1) to generate new solution.

(iii) Else add the solution to the TL and go to step (3)

for DS.

(3) Deep Search:

(i) Deeply search
'

iW and get the corresponding

deep state
''

iW and get its corresponding

)(''

iE W .

(ii) If)(''

iE W <)(bE W then set bW =
''

iW

 and)(bE W =)(''

iE W .

(4) Generate a new solution
'

ijW in the neighbor-hood of

'

iW and evaluate)('

ijE W .

(5) If this new superficial solution
'

ijW is in TL and does

not satisfy AC then go to step(4) to generate a new

neighbor, else add
'

ijW to TL and go to next step.

(6) Deeply search
'

ijW similar to step (3) and update the

best solution if the squared error obtained in this deep

search is less than the best error square till now. If j

is less than maximum number of neighborhood

searches go to step (4). Or else finalize bW as the

best solution .

 The superior performance, in terms of BER, of this

algorithm can be noted in the last section .

4.3 SLOPE ADAPTATION USING TS

As mentioned earlier, the concept of adaptation

of slopes of the activation functions can be implemented

in two ways. Algorithm-1 describes the first method in

which the weights are adapted first using BP and then

fixing these we use TS for slope adaptation. Algorithm-2

describes the second method of adapting the slopes, where

both the synaptic weights and the slopes are adapted in

each iteration. This method of slope adaptation also

requires maintaining the Tabu List (TL), to keep track of

the regions already searched. We start by choosing some

random values to slopes. It is similar to weight adaptation

which includes two parts- Deep Search (DS) and

Superficial Search (SS).In this process an initial set of

weights and slopes are randomly generated. The initial set

of slopes is given by)0( . In the SS we will obtain the

best set of slopes)0(b . Then this solution is further

searched using the DS. In the DS we generate random

solutions in its neighborhood and the squared error is

calculated and the best solution is chosen.

Algorithm-1

The basic steps involved in the algorithm are

1. Generate an initial set of synaptic weights

)0(W and initialize the slopes of all the

activation functions to unity.

2. Update the slopes using BP algorithm as

explained in section 2.2

3. Now freeze the weights and start the Superficial

Search:

i. Initialize some variable, 0x

ii. Now, assign some random values,

within the chosen range, to the set of

slopes)(i ,2,1,0i

iii. Compute))((iE  , i.e. squared error.

iv. If this solution is in TL and if 0x or

if))(())((iEiE b then increment

x go to step 3(ii).

v. Else add)(i to TL and set

)()(iib  and

))(())((iEiE b  .

vi. If x is less than MAX number of

iterations, increment x and go to

step 3(ii), else start DS

4. Now Deep search:

i. Initialize a variable 0x

ii. Generate the new solution

)(in in the neighborhood of

)(ib

iii. Compute))((iE n .

iv. If the solution is in TL or if

))(())((iEiE bn  increme

nt x and go to step 4(ii).

v. Else set)()(ii nb  and

))(())((iEiE nb 

vi. If x is less than MAX number of

iterations, increment x and go to

step 4(ii), else go to step 5.

5. If i is less than maximum neighborhood

searches, go to step 3.

6. Else choose the best among all the best

solution obtained.

The results obtained using this algorithm is explained in

the next section. The algorithm has some practical

limitations. It is not so suitable for real time applications

as it needs to maintain a memory for the training data to

compute the error square its DS. Hence a more useful

algorithm is formulated which will be more useful for real

time applications. In this algorithm starting from the time

instant 0k , the mean square error is computed over the

data received till the present instant. The algorithm can be

explained as follows.

Algorithm-2
The basic steps of this algorithm is explained below.

1. Generate an initial set of synaptic weights

)0(W and slopes)0( .

2. Forward propagate the input sequence and

compute the error at the output node.

3. Back propagate the error and compute the local

gradient at each node to get the vector δ(i), which

is the set of local gradients of all the nodes at the

iteration i.

4. Update the weight using weight update equation

 )1()(ii WW δ(i))(iy (4.2)

where)(iy is the set of output vector of all the nodes

(including input layer).

5. Deep Search:

i. Initialize some variable 0x

ii. Generate a new solution)(in in the

neighborhood of)(i

iii. Compute the mean square error

))((iE n using the data received till now.

iv. If)(in is in the TL and if 0x or if

))(())((iEiE bn  , increment x and

go to step 5(ii).

v. Else add)(in to TL and set

)()(ii nb  and

))(())((iEiE nb 

vi. If x is less than MAX number of

neighborhood searches, increment x and go

to step 5(ii), or else go to step 6.

6. If i is less than maximum number of iterations,

increment i and go to step 2 else to step 7.

7. Choose the best solution among all the)(ib ’s.

This algorithm is more suitable for practical applications,

as it uses the present data received to update the weights

and also to compute the mean square error in the TS

process to adapt the weights.

5. Experimental Results

In this section the experimental results are taken into

account in order to compare the performance of the

equalizer trained using BP and TBBP. Both the BP and

TBBP algorithms are written in C and compiled using

Microsoft VC++6.0. The plots have been taken using

Microsoft Excel 2003. The channels considered for

equalization has the following transfer functions.

1

1 5.00.1)( zzH ,
21

2 4084.08164.04084.0)(  zzzH ,
321

3 8.00.18.035.0)(  zzzzH ,

4321

4 0.14201.05684.03841.09413.0)(  zzzzzH

[12, 13, 14] For this experiment a simple three layered

neural network with decision feedback is considered. The

equalizer order is chosen to have 5,3,2m , feedback

order 4,2,1bn , decision delay 4,2,0d and in the

hidden layer only one node is considered to design an

efficient and compact equalizer with an objective to

appreciate the superior performance of TS even with this

very small structure The plots are obtained by testing the

equalizer with
610 samples. In TBBP, algorithm 50

superficial states have been searched and 100 neighbor

solutions are generated in the neighbor-hood of each

superficial state. But BP algorithm based neural network

is trained with 2000 samples.

 Fig: 3 SNR Vs BER plot for BP and TBBP for H1(Z)

 Fig: 4 SNR Vs BER plot for BP and TBBP for H2(Z)

 Fig: 5 SNR Vs BER plot for BP and TBBP for H3(Z)

 Fig: 6 SNR Vs BER plot for BP and TBBP for H4(Z)

To obtain similar performance for the H4(z) channel BP

algorithm needs a more complex structure. In Fig7 it is

shown that for the similar performance the BP algorithm

needs 6 nodes in its hidden layer.

 Fig: 7 SNR Vs BER plot for BP and TBBP for H4(Z)

For a BP algorithm, it needs 6066)45(

adjustable parameters (weights) to obtain the similar

performance that a TBBP algorithm gives with just

1011)45( weights, i.e. the proposed TBBP

algorithm reduces the required number of adjustable

parameters from 60 to 10.

6. Conclusion

In this paper we propose a novel method of training a

neural network using TBBP is proposed. The principal

advantages of using the Tabu search is that it can jump out

of the local minima by extending its search into the global

space. Another advantage is that it avoids the searched

concaves effectively and hence time saving. This paper

presents the efficiency of the search, algorithm together

with the neural network in improving the performance of

the equalizer even with a simple structure.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
0 5 10 15 20 25

SNR

BER

BP
TABU1
TABU2
TABU3

-2.5

-2

-1.5

-1

-0.5

0
0 5 10 15 20 25

SNR

BER

BP
TABU1
TABU2
TABU3

-6

-5

-4

-3

-2

-1

0
0 5 10 15 20 25

SNR

BER

BP
TABU1
TABU2
TABU3

-6

-5

-4

-3

-2

-1

0
0 5 10 15 20 25

SNR

BER

BP
TABU1
TABU2
TABU3

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
0 5 10 15 20 25

SNR

BER

TBBP 1-1
BP 6-1

References
[1] S.Haykin, Neural Networks: A Comprehensive

Foundation (2
nd

 Ed, Pearson Education, 2001)

[2] R. P. Lippmann, An Introduction to Computing with

Neural Nets, IEEE ASSP Magazine,1987,4-22.

[3] B. Widrow and SD Stearns, Adaptive Signal

Processing, (Englewood Cliffs , NJ: Prentice Hall 1985).

[4] Jian Ye, Junfei Qiao, Ming-ai Li, Xiaogang Ruan, A

Tabu based neural network learning algorithm,

Neurocomputing, 70, 2007, 875-882.

[5] F. Glover, Tabu Search – Part I, ORSA Journal on

Computing, vol.1,1989, 190-206.

[6] F. Glover, Tabu Search – Part II, ORSA Journal on

Computing, vol.2, 1990, 4-32.

[7] S. Haykin, Adaptive Filter Theory,(4
th

 Ed, Pearson

Education, 2002)

[8] S. Qureshi, Adaptive Equalization, Proc IEEE, 1985,

1349-1387.

[9] J. G. Proakis, Digital Communications, (New York:

McGraw-Hill, 1983).

[10] S. Siu, G.J Gibson and C.F.N. Cowan, Multi-layer

Perceptron structures applied to adaptive equalizers for

data communications, IEEE Proceedings ICASSP

Glasgow, Scotland, May 1989, 1183-1186
[11] Chen. S, Mulgrew. B and Mclaughlim. S, “Adaptive

Bayesian equalizer with decision feedback”, IEEE

Trans_signal_Processing, Vol. 41, No. 9, Sept 1993

[12] Haykin. S. Adaptive Filter Theory. Delhi: 4
th

 Ed,

Pearson Education, 2002

[13] Haykin. S. Digital Communication. Singapore: John

Wiley & Sons Inc,1988.

[14] Proakis. J. G. Digital Communications. New

York: McGraw-Hill, 1983. McGraw-Hill, 1983.

