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Abstract

We propose an evolving scheme to detect slow as well
as fast moving objects in a video sequence. The proposed
scheme employ both spatio-temporal and temporal segmen-
tation to obtain the Video Object plane and hence detection.
We propose a Compound Markov Random Field Model as
the a priori image model that takes into account the spatial
distribution of the current frame, temporal frames and the
edge maps of the temporal frames. The spatio-temporal seg-
mentation is cast as a pixel labeling problem and the labels
are the MAP estimates. The MAP estimates of a frame are
obtained by a hybrid algorithm. The spatial segmentation of
a given frame evolves to generate the spatial segmentation
of the subsequent frames. The evolved spatial segmentation
together with the temporal segmentation produces the Video
Object Plane (VOP) and hence detection. Our scheme does
require the computation of spatio-temporal segmentation of
the initial frame thus speeding up the whole process. The
results of the proposed scheme are compared with JSEG
method are found to be better in terms of the misclassifi-
cation error.

1. Introduction

There has been a growing research interest in video
image segmentation over the past decade and towards this
end, a wide variety of methodologies have been developed
[18],[16],[13],[6]. The video segmentation methodologies
have extensively used stochastic image models, particularly
Markov Random Field (MRF) model, as the model for
video sequences [7],[11],[12]. MRF model has proved to
be an effective stochastic model for image segmentation
[15],[3],[4] because of its attribute to model context
dependent entities such as image pixels and correlated
features. In Video segmentation, besides spatial modeling

and constraints, temporal constraints are also added to
devise spatio-temporal image segmentation schemes. An
adaptive clustering algorithm has been reported [7] where
temporal constraints and temporal local density have been
adopted for smooth transition of segmentation from frame
to frame. Spatio-temporal segmentation has also been
applied to image sequences [19] with different filtering
techniques. Extraction of moving object and tracking of the
same has been achieved in spatio-temporal framework [9]
with Genetic algorithm serving as the optimization tool for
image segmentation. Recently, MRF model has been used
to model spatial entities in each frame [9] and Distributed
Genetic algorithm (DGA) has been used to obtain segmen-
tation. Modified version of DGA has been proposed [11] to
obtain segmentation of video sequences in spatio-temporal
framework. Besides, video segmentation and foreground
subtraction has been achieved using the spatio-temporal
notion [1],[2] where the spatial model is the Gibbs Markov
Random Field and the temporal changes are modeled by
mixture of Gaussian distributions. Very recently, automatic
segmentation algorithm of foreground objects in video
sequence segmentation has been proposed [8]. In this
approach, first region based motion segmentation algorithm
is proposed and thereafter the labels of the pixels are
estimated. A compound MRF model based segmentation
scheme has been proposed in spatio-temporal framework
[17]. The problem of extraction of moving target from
the background has been investigated [10] where adaptive
thresholding based scheme has been employed to segment
the images.

In this piece of work, we propose a scheme that detects
slow as well as fast moving objects. The proposed scheme
is a combination of spatio-temporal segmentation and tem-
poral segmentation. In this approach, we obtain spatio-
temporal segmentation once for a given frame and there-
after, for subsequent frames, the segmentation is obtained

Sixth Indian Conference on Computer Vision, Graphics & Image Processing

978-0-7695-3476-3/08 $25.00 © 2008 IEEE

DOI 10.1109/ICVGIP.2008.38

398

Sixth Indian Conference on Computer Vision, Graphics & Image Processing

978-0-7695-3476-3/08 $25.00 © 2008 IEEE

DOI 10.1109/ICVGIP.2008.38

398

Sixth Indian Conference on Computer Vision, Graphics & Image Processing

978-0-7695-3476-3/08 $25.00 © 2008 IEEE

DOI 10.1109/ICVGIP.2008.38

398

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on May 27, 2009 at 07:17 from IEEE Xplore.  Restrictions apply.



by the evolution of the initial spatio-temporal segmenta-
tion. We have proposed a Compound MRF model that takes
care of the spatial distribution of the current frame,temporal
frames, edge maps in the temporal direction. The MRF
model parameters are selected on a trial and error basis.
This problem is formulated using MAP estimation prin-
ciples. The pixel labels are obtained using the proposed
hybrid algorithm.For the subsequent frames the initial seg-
mentation evolves to obtain the spatial segmentation. This
spatio-temporal segmentation combined with temporal seg-
mentation yields the VOP and hence Video Object detec-
tion. In our scheme for temporal segmentation, we use the
segmented frames as opposed to the original frames. The
results obtained by proposed methods are compared with
that of the JSEG method and it is observed that the pro-
posed method is found to be better than former one in the
context of misclassification error.

2. Spatio temporal image modeling

Let the observed video sequences y be considered to be
3-D volume consisting of spatio-temporal image frames.
For video, at a given time t, yt represents the image at time
t and hence is a spatial entity. Each pixel in yt is a site s
denoted by yst and hence, yst refers to a spatio-temporal
representation of the 3-D volume video sequences. Let x
denote the segmented video sequences and xt denote the
segmentation of each video frame yt. Instead of modeling
the video as a 3-D model we adhere to a spatio-temporal
modeling. We model Xt as a Markov random Field Model
and the temporal pixels are also modeled as MRF. We model
Xt as Markov Random Field model and the temporal pix-
els are also modeled as MRF. In particular for second order
modeling in the temporal directions, we take Xt, Xt−1 and
Xt−2. In order to preserve the edge features, another MRF
model is considered for the pixel of the current frame xst

and the line fields of Xt−1 and Xt−2. Thus, three MRF
models are used as the spatio-temporal image model. The
MRF model taking care of edge features, in other words the
line fields of frame xt−1 and xt−2 together with xt are mod-
eled as MRF. It is known that if Xt is MRF then, it satisfies
the markovianity property in spatial direction.

P (Xst = xst | Xqt = xqt,∀qεS, s �= q)
= P (Xst = xst | Xqt = xqt, (q, t)εηs,t)

where ηs,t is denotes the neighborhood of (s, t) and S de-
notes spatial Lattice of the frame Xt. For temporal MRF,
the following markovianity is satisfied.

P (Xst = xst | Xpq = xpq, q �= t, p �= s,∀(s, t)εV )
= P (Xst = xst | Xpq = xpq, (p, q)εηs,t)

where V denotes the 3-D volume of the video sequence.
In spatial domain Xt is modeled as MRF and hence the
prior probability can be expressed as Gibb’s distributed

which can be expressed as P (Xt) = 1
z e

−U(Xt)
T where

z is the partition function which is expressed as z =∑
x e

−U(xt)
T , U(Xt) is the energy function and expressed

as U(Xt) =
∑

c∈C Vc(xt) and Vc(xt) denotes the clique
potential function,T denotes the temperature and is consid-
ered to be unity. We have considered the following clique
potential function.

Vc(x) =
{

+α : ifxst �= xptand(s, t), (p, t)εS
−α : ifxst = xptand(s, t), (p, t)εS

Vtec(x) =
{

+β : ifxst �= xqtand(s, t), (q, t)εS
−β : ifxst = xqtand(s, t), (q, t)εS

Analogously in the temporal direction

Vteec(x) =
{

+γ : ifxst �= xetand(s, t), (e, t)εS
−γ : ifxst = xetand(s, t), (e, t)εS

2.1. MRF-MAP Based Framework

The Segmentation problem is cast as a pixel labeling
problem. Let y be the observed video sequence and be an
image frame at time t and s denote the site of the image
yt. Correspondingly Yt is modeled as a random field and
yt is a realization frame at time t. Thus, yst denotes as a
spatio-temporal co-ordinate of the grid (s, t). Let x denotes
the segmentation of the video sequence and let xt denotes
the segmentation of an image at time t. Let Xt denote the
random field in the spatial domain at time t. The observed
image sequences Y are assumed to be the degraded ver-
sion of the segmented image sequences X . For example at
a given time t, the observed frame Yt is considered as the
degraded version of the original label field Xt . This degra-
dation process is assumed to be Gaussian Process. Thus,
the label field can be estimated from the observed random
field Yt . The label field is estimated by maximizing the
following posterior probability distributions.

x̂ = arg max
x

P (X = x|Y = y) (1)

Where x̂ denotes the estimated labels. Since, x is unknown
it is very difficult to evaluate (1), hence, using Baye’s theo-
rem (1) can be written as

x̂ = arg max
x

P (Y = y|X = x)P (X = x)
P (Y = y)

(2)

Since y is known, the prior probability P (Y = y) is con-
stant. hence (2) reduces to

x̂ = arg max
x

P (Y = y|X = x, θ)P (X = x, θ) (3)
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Where θ is the parameter vector associated with x. Accord-
ing to Hammerseley Clifford theorem, the prior probability
P (X = x, θ) is Gibb’s distributed and is of the following
form

P (X = x) = e−U(x,θ) (4)

= e[−
∑

cεC
[Vsc(x)+Vtec(x)+Vteec(x)]]

In (4) Vsc(x) is the clique potential function in the spatial
domain at time t, Vtec(x) denotes the clique potential in
the temporal domain and Vteec(x) denotes the clique poten-
tial in the temporal domain incorporating edge feature. We
have proposed this additional feature in the temporal direc-
tion. (4) is called the edgebased model. In the absence of
the edge feature in temporal direction it has been observed
that many classes are merged and the accuracy of the seg-
mentation degrades. This could be attribued to the missing
edge feature in the temporal directions. The corresponding
edgeless model is

P (X = x) = e−U(x,θ) = e[−
∑

cεC
[Vsc(x)+Vtec(x)]]

The likelihood function P (Y = y|X = x) can be expressed
as

P (Y = y|X = x) = P (y = x + n|X = x + θ)
= P (N = y − x|X = x + θ)

Since n is assumed to be Gaussian and there are three com-
ponents present in color, P (Y = y|X = x) Can be ex-
pressed as

P (N = y − x|X, θ) (5)

=
1√

(2π)ndet [k]
e−

1
2 (y−x)T K−1(y−x)

Where k is the covariance matrix. Assuming decorrelation
of the three RGB planes and the variance to be same among
each plane, (5) can be expressed as

P (N = y − x|X, θ) =
1√

(2π)3σ3
e−

1
2σ2 (y−x)2 (6)

In (6) Variance σ2 corresponds to the Gaussian degradation.
Hence (3) can be expressed as

x̂ = arg max
x

1
(2π)3σ3

× (7)

e
[−‖y−x‖2]

2σ2 [−[
∑

cεC
[Vsc(x)+Vtec(x)+Vteec(x)]]]

The apriori model having the three components is attributed
as the edgebased model. Maximizing (7) is tantamount to

minimizing the

x̂ = arg min
x

[‖ y − x ‖2

2σ2

]
+ (8)[∑

cεC

Vsc(x) + Vtec(x) + Vteec(x)

]

x̂ in (8) is the MAP estimate and the MAP estimate is ob-
tained by the proposed hybrid algorithm. The associated
clique potential parameters and the noise standard deviation
σ are selected on trial and error basis

2.2. Evolutionary Approach Based Segmen-
tation Scheme

In order to detect fast moving objects, temporal seg-
mentation usually used and for slow moving objects spatio-
temporal segmentation has to be coupled with temporal seg-
mentation. Spatio-temporal segmentation in MRF-MAP
frame work is computational intensive and hence comput-
ing spatial segmentation of each frame would incur high
computational burden. Hence, we suggest the following
evolutionary approach to obtain spatial segmentation. In
this scheme, the temporal changes in the spatio-temporal
segmentation is replaced with the changes occuring in the
respective original frames. In other words we obtain the
spatio-temporal segmentation, and subtract the temporal
changes. Thereafter, we we add the respective changes of
the original frame. This improves the accuracy of segmen-
tation while taking care of the moving objects. Let yt de-
notes the current frame and xt denotes the corresponding
spatial segmentation. The next frame is denoted by yt+d

and x(t+d)i denotes the initial spatial segmentation for the
yt+dth frame. x(t+d)i is obtained as follows,

x(t+d)i = xt− | yt+d − yt | +yt+d(yt+d−yt) (9)

Where yt+d(yt+d−yt) denotes the change portion of the tth
frame to be replaced in the tth segmented frame xt. x(t+d)i

serves as the initial spatial segmentation for (t+d)th frame.
Iterated Conditional Mode (ICM) is run on the (t + d)th
frame starting from x(t+d)i to obtain the x(t+d). This pro-
cess repeated to obtain spatio-temporal segmentation of any
other frame.

2.3. Hybrid Algorithm

It is observed that SA algorithm takes substantial amount
of time to converge to the global optimum solution. SA al-
gorithm has the attribute of coming out of the local minima
and converging to the global optimal solution. This feature
could be attributed to the acceptance criterion(acceptance
with a probability). We have exploited this feature, that is
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the proposed hybrid algorithm uses the notion of acceptance
criterion to come out of the local minima and to be near the
global optimal solution. Thus, in the hybrid algorithm, SA
algorithm produces an intermediate solution that can be lo-
cal to the optimal solution. In order to obtain the optimal
solution, a local convergence based strategy is adopted for
quick convergence. Towards this end, we have used Iter-
ated Conditional Mode (ICM) [3] algorithm as the locally
convergent algorithm. Thus, the proposed algorithm is a
hybrid of both SA algorithm and ICM algorithm. The hy-
brid algorithm’s working principle is as follows. Initially, a
specific number of time steps of SA algorithm, fixed by trial
and error, are executed to achieve the near optimal solution.
Thereafter, ICM is run to converge to the desired optimal
solution. This avoids the undesirable time taken by SA al-
gorithm when the solution is close to the optimal solution.
The steps of proposed hybrid algorithm are enumerated as
below :

1. Initialize the temperature Tin.

2. Compute the energy U of the configuration.

3. Perturb the system slightly with suitable Gaussian dis-
turbance.

4. Compute the new energy U
′

of the perturbed system
and evaluate the change in energy ΔU = U

′ − U .

5. If (ΔU < 0), accept the perturbed system as the
new configuration Else accept the perturbed system as
the new configuration with a probability exp(−ΔU)/t
(where t is the temperature of cooling schedule).

6. Decrease the temperature according to the cooling
schedule.

7. Repeat steps 2-7 till some prespecified number of
epochs.

8. Compute the energy U of the configuration.

9. Perturb the system slightly with suitable Gaussian dis-
turbance.

10. Compute the new energy U
′

of the perturbed system
and evaluate the change in energy ΔU = U

′ − U .

11. If (ΔU < 0), accept the perturbed system as the new
configuration, otherwise retain the original configura-
tion.

12. Repeat steps 8-12, till the stopping criterion is met.
The stopping criterion is the energy (U < threshold).

2.4. Temporal Segmentation

In temporal segmentation, a change detection Mask
(CDM) is obtained and this CDM serves as a precursor for
detection of foreground as well as background. This CDM
is obtained by taking the label difference of two consecutive
frames followed by thresholding. We have adopted a global
thresholding method such as Otsu’s method for threshold-
ing the image. The results, thus obtained are verified and
compensated by historical information, to enhance the seg-
mentation results of the moving object. Thus the results
obtained are compared with that of the CDM constructed
with taking intensity difference of two consecutive frames.
Where we found that label difference as that of intensity dif-
ference give better results. The historical information of a
pixel means whether or not the pixel belongs to the moving
object parts in the previous frame. This is represented as
follow

H = {hs|0 ≤ s ≤ (M1 − 1)(M2 − 1)} (10)

Where H is a matrix of size of a frame. If a pixel is found
to have hs = 1 , then it belongs to moving object in the pre-
vious frame; otherwise it belonged to the background in the
previous frame. Based on this information, CDM is mod-
ified as follows. If it belongs to a moving object part in
the previous frame and its label obtained by segmentation
is same as one of the corresponding pixels in the previous
frame, the pixel is marked as the foreground area in the cur-
rent frame.

2.5. VOP Generation

The Video Object Plane (VOP) is obtained by the com-
bination of temporal segmentation result and the original
video image frame. In a given scene we consider objects
as one class and background as the other thus having a two
class problem of foreground and background. Therefore,
the temporal segmentation results yield two classes. We de-
note FMt and BMt as the foreground and background part
of the CDMt respectively. The region forming foreground
part in the temporal segmentation is identified as object and
is obtained by the intersection of temporal segmentation and
original frame as V OP = num(FMt∩yt) .Where the num
(.) is the function counting the number of pixel forming the
region of interest.

3. Simulation

We have considered three types of video sequences
as shown in Fig. 1, Fig. 2, Fig. 3. Fig. 1 corresponds
to slow movements of the sequence where as Fig. 2
and Fig. 3 corresponds to video sequences with fast
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Table 1. Percentage of Misclassification Error

V ideo FrameNo. Evolving JSEG

12 0.24 6.82

Grandma 37 0.15 0.65

62 0.15 4.5

75 0.12 6.20

Akiyo 95 0.10 1.62

115 0.15 1.65

4 0.10 2.55

Container 12 0.11 1.51

20 0.13 2.08

moving objects. Fig. 1(a) shows Grandma image of 12th
frame and 1(b) and 1 (c) corresponds to 37th and 62 nd
frame. It is observed from these frames that there are
slow changes. The corresponding ground truth image
constructed manually are shown in Fig. 1(d), (e) and (f).
Fig. 1(g) shows the spatial segmentation obtained using
the CMRF Model (Compound markov Random Field
Model) and hybrid algorithm. The MRF model parameters
chosen are α = 0.05, β = 0.009, γ = 0.007, σ = 5.2.
Fig.1(g) evolves to produce the initial segmentation results
corresponding to 18, 24, 30 and 37th frame as shown in
Fig. 1(h), (i), (j) and (k) respectively. Using 1(k) as the
crude segmentation ICM is run to obtain the segmentation
of 37th frame as shown in Fig. 1(l). Analogously for the
62nd frame segmentation result of 37th frame evolves to
obtain crude segmentation of 62nd frame as shown in Fig.
1(q). ICM is run starting Fig. 1(q) and the segmented
results obtained for 62nd frame is shown in Fig. 1(r). The
temporal segmentation result obtained using the segmented
result instead of original frames are shown in Fig. 1(v) to
(x) and the corresponding VOPs are shown in Fig. 1(y) to
(aa). It is observed from these VOP that the objects (i.e
Grandma with slow moments) in different frames have been
detected. Temporal segmentation using the original frames
are shown in 1(ae), (af) and (ag). It is observed from these
figures that there are some white portion appearing near
the solder of the Grandma that leads to misclassification.
Thus, temporal segmentation obtained using the segmented
frame yields better VOPs than that of using the original
frames. The results obtained by JSEG method is shown in
Fig. 1(s), (t) and (u). The %age of misclassification error is
given in Table. 1 and it can be observed that the proposed
method has less misclassification error as compared to
JSEG method.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(v) (w) (x)
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(y) (z) (aa)

(ab) (ac) (ad)

(ae) (af) (ag)

Figure 1. Grandma Video (a)-(c)Original
Frame No.12,37,62, (d)-(f) Ground truth
of Frame No.12,37,62, (g)segmentation of
Frame No.12 with Edge based Compound
MRF Model, (h)-(k) Evolving Crude result of
Frame No. 18,24,30,37, (l)-(m) Segmenta-
tion of Frame No.37 using Evolving scheme,
(n)-(q) Evolving Crude Result of Frame No.
41,47,53,62, (r) Segmentation of Frame No.62
using Evolving Scheme, (s)-(u) Segmentation
Result using JSEG Scheme, (v)-(x) Temporal
Segmentation Result using Segmented Re-
sult CDM, (y)-(aa) VOP Extracted using Tem-
poral Segmentation Result (v) to (x), (ab)-(ad)
Temporal Segmentation Result using Origi-
nal Frame CDM, (ae)-(ag) VOP Extracted us-
ing Temporal Segmentation Result (ab) to
(ad)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(v) (w) (x)

(y) (z) (aa)

(ab) (ac) (ad)
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(ae) (af) (ag)

Figure 2. Akiyo Video (a)-(c)Original Frame
No.75,95,115, (d)-(f) Ground truth of Frame
No.75,95,115, (g) Segmentation of Frame
No.75 with Edge based Compound MRF
Model, (h)-(k) Evolving Crude Result of Frame
No. 79,83,87,95, (l)-(m) Segmentation of
Akiyo video Frame No.95 using Evolving
scheme, (n)-(q) Evolving Crude Result of
Frame No. 100,105,110,115, (r) Segmentation
of Akiyo video Frame No.115 using Evolv-
ing Scheme, (s)-(u) Segmentation Resul us-
ing JSEG Scheme, (v)-(x) Temporal Segmen-
tation Result using Segmented Result CDM,
(y)-(aa) VOP Extracted by Evolving Scheme
using Temporal Segmentation Result (v) to
(x), (ab)-(ad) Temporal Segmentation Result
using Original Frame CDM, (ae)-(ag) VOP Ex-
tracted using Temporal Segmentation Result
(ab) to (ad)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(v) (w) (x)

(y) (z) (aa)

(ab) (ac) (ad)

(ae) (af) (ag)

Figure 3. Container Video(a)-(c)Original
Frame No.4,12,20, (d)-(f) Ground truth of
Frame No.4,12,20, (g) Segmentation of
Frame No.4 with Edge based Compound
MRF Model, (h)-(k) Evolving Crude Result of
Frame No. 6,8,10,12, (l)-(m) Segmentation
of Frame No.12 using Evolving scheme,
(n)-(q) Evolving Crude Result of Frame No.
14,16,18,20, (r) Segmentation of Frame No.20
using Evolving Scheme, (s)-(u) Segmentation
Result using JSEG Scheme, (v)-(x) Tempo-
ral Segmentation Result using Segmented
Result CDM, (y)-(aa) VOP Extracted by Evolv-
ing Scheme using Temporal Segmentation
Result (v) to (x), (ab)-(ad) Temporal Segmen-
tation Result using Original Frame CDM,
(ae)-(ag) VOP Extracted using Temporal
Segmentation Result (ab) to (ad)
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Table 2. Time required for execution of the
programme in Second

V ideo FrameNo. EdgeBased Evolving

Grandma 37 104 9

65 104 9

Akiyo 95 82 8

115 82 8

Container 12 112 12

20 112 12

The second video is Akiyo video sequence as shown in
Fig. 2 where it is observed that there are more changes in
the moving part. The evolving frames are also shown in
Fig. 2. The VOPs obtained using the segmented results
are shown in Fig. 2(y), (z) and (aa). It is observed that
the moving parts have been detected. The temporal seg-
mentation using original frame is shown in Fig. 2(ab), (ac)
and (ad) and the corresponding VOPs are shown in Fig.
2(ae), (af) and (ag). As observed some background portion
have been reflected here. Similar observation is also made
for the container video sequence of Fig. 3. In both the
cases the %age of misclassification error is less than that of
JSEG method and is given in Table. 1. Thus the proposed
method proved to be very effective in both slow as well as
fast moving objects. We have implemented this algorithm
in a Pentium4(D), 3GHz, L2 cache 4MB , 1GBRAM ,
667FSB PC. The execution time for different video image
frames using the above configuration is tabulated in Table 2

4. Conclusion

We propose a scheme of spatial segmentation based on
the notion of evolution. The spatio-temporal frame of the
first frame is obtained and this segmented one evolves to
generate the segmentation of subsequent. This avoids to
compute the spatio-temporal segmentation of each frame
and thus the proposed scheme is 13 times faster than that
of the scheme computing spatio-temporal segmentation of
each frame. The compound Markov Random Field Model
is used to model the image. The parameters are selected on
trial and error basis. The proposed scheme is found to be
better than JSEG method.
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