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Abstract

Independent Component Analysis, a computationally efficient blind statistical signal processing technique, 
has been an area of interest for researchers for many practical applications in various fields of science and 
engineering. The present paper attempts to treat the fundamental concepts involved in the independent 
component analysis (ICA) technique and reviews different ICA algorithms. A thorough discussion of the 
algorithms with their merits and weaknesses has been carried out. Applications of the ICA algorithms in  
different fields of science and technology have been reviewed. The limitations and ambiguities of the  
ICA techniques developed so far have also been outlined. Though several articles have reviewed the ICA 
techniques in literature, they suffer from the limitation of not being comprehensive to a first time reader or 
not incorporating the latest available algorithm and their applications. In this work, we present different ICA 
algorithms from their basics to their potential applications to serve as a comprehensive single source for an 
inquisitive researcher to carry out his work in this field.
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1.	 Introduction to ICA

Recently, there has been an increasing interest in statis-
tical models for learning data representations. A very 
popular method for this task is independent component 
analysis (ICA), the concept of which was initially pro-
posed by Comon [1]. The ICA algorithm was initially 
proposed to solve the blind source separation (BSS) 
problem i.e. given only mixtures of a set of underlying 
sources, the task is to separate the mixed signals and 
retrieve the original sources [2,3]. Neither the mixing 
process nor the distribution of sources is known in the 
process. A simple mathematical representation of the 
ICA model is as follows.

Consider a simple linear model which consists of N 
sources of T samples i.e. si = [si(1)...si(t)...si(T)]. The 
symbol t here represents time, but it may represent some 
other parameter like space. M weighted mixtures of the 
sources are observed as X, where Xi = [X i(1)... X i(t)... X i(T)]. 
This can be represented as -

X = A S + n� (1)
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S and n represent the additive white Gaussian noise 
(AWGN). It is assumed that there are at least as many 
observations as sources i.e. M ≥ N. The M × N matrix 
A is represented as -
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A relates X and S. A is called the mixing matrix. The 
estimation of the matrix S with knowledge of X is the 
linear source separation problem. This is schematically 
shown in Figure 1.

The source separation problem cannot be solved if there 
is no knowledge of either A or S, apart from the observed 
mixed data X. If the mixing matrix A is known and the 
additive noise n is negligible, then the original sources 
can be estimated by evaluating the pseudo inverse of 
the matrix A, which is known as the unmixing matrix B, 

Figure 1: Illustration of mixing and separation system. (A) is 
the mixing matrix and (B) is the unmixing matrix.

[Downloaded free from http://www.tr.ietejournals.org on Thursday, February 12, 2009]



321IETE TECHNICAL REVIEW  |  Vol 25  |  ISSUE 6  |  NOV-DEC 2008

such that

BX = BAS = S� (4)

For cases where the number of observations M equals 
the number of sources N (i.e. M = N), the mixing matrix 
A is a square matrix with full rank and B = A−1.

The necessary and sufficient condition for the pseudo-
inverse of A to exist is that it should be of full rank. When 
there are more observations than the sources (i.e. M > N), 
there exist many matrices B which satisfy the condition 
BA = I. Here the choice B depends on the components of 
S that we are interested in. When the number of observa-
tions is less than the number of sources (i.e. M < N), a 
solution does not exist, unless further assumptions are 
made. On the other side of the problem, if there is no 
prior knowledge of the mixing matrix A, then the estima-
tion of both A and S is known as a blind source separation 
(BSS) problem. A very popular technique for solution of 
a BSS problem is independent component analysis [4].
Estimation of the underlying independent sources is the 
primary objective of the BSS problem. The problem defined 
in (1), under the assumption of negligible Gaussian noise 
n, is solvable with the following restrictions:

•	 The sources (i.e. the components of S) are statistically 
independent.

•	 At most, one of the sources is Gaussian distributed.
•	 The mixing matrix is of full rank.

From the above discussion, the following remarks can 
be made on ICA.

Remark1: Independent component analysis (ICA) is a 
linear transformation S = WX of a multivariate signal X, 
such that the components of S are as independent as pos-
sible in the sense of maximizing some objective function 
f(s1,..., sN), which is a measure of statistical independence.

Remark2: ICA can be defined as a computationally efficient 
statistical signal processing technique for separating a 
multivariate signal into its components, assuming that all 
of these components are statistically independent.

2.	 Statistical Independence

The above discussions make it clear that statistical inde-
pendence is the key foundation of independent component 
analysis (ICA). For the case of two different random vari-
ables x and y, x is independent of the value of y, if knowing 
the value of y does not give any information on the value 
of x. Statistical independence is defined mathematically in 
terms of the probability densities as - the random variables 
x and y are said to be independent, if and only if

px,y (x, y) = px (x)py (y)� (5)

where px,y(x,y) is the joint density of x and y, px(x) and 
py(y) are marginal probability densities of x and y 
respectively. Marginal probability density function of 
x is defined as

px (x) = ∫px,y(x, y)dy� (6)

Generalizing this for a random vector s = [s1,..., sN]T with 
multivariate density p(s) has statistically independent 
components, if the density can be factorized as

p(s)= p (s )i i
i=1

N

∏ � (7)

In other words, the density of s1 is unaffected by s2 when 
two variables s1 and s2 are independent. Statistical inde-
pendence is a much stronger property than uncorrelat-
edness, which takes into account second order statistics 
only. If the variables are independent, they are uncor-
related; but the converse is not true.

Figure 2: Effect of mixing. The original sources s1 and s2 are shown in left plot, and the mixed signals x1 and x2 are shown in the 
right plot.
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3.	 Contrast Functions for ICA

The data model for independent component analysis is 
estimated by formulating a function which is an indicator 
of independence in some way and then minimizing or 
maximizing it. Such a function is often called a contrast 
function or cost function or objective function. The opti-
mization of the contrast function enables the estimation of 
the independent components. The ICA method combines 
the choice of an objective function and an optimization 
algorithm. The statistical properties like consistency, 
asymptotic variance, and robustness of the ICA tech-
nique depend on the choice of the objective function 
and the algorithmic properties like convergence speed, 
memory requirements, and numerical stability depends 
on the optimization algorithm. The contrast function in 
some way or the other is a measure of independence. In 
this section, different measures of independence, which 
are frequently used as contrast functions for ICA are 
discussed.

3.1	 Measuring Nongaussianity

3.1.1 Central Limit Theorem

The central limit theorem is the most popular theorem in 
statistical theory and plays a predominant role in ICA. 
According to it, let

x = Zk i
i=1

K

∑ � (8)

be a partial sum of sequence {zi} of independent and iden-
tically distributed random variables zi. Since the mean 
and variance of xkcan grow without bound as k → ∞, 
consider the standardized variables yk instead of xk,

y =
x m

k
k xk

xk

−
σ

� (9)

where mxk and σxk are mean and variance of xk. The 
distribution of yk converges to a Gaussian distribution 
with zero mean and unit variance when k → ∞.

This theorem has implicit consequences in ICA and BSS. 
A typical mixture or component of the data vector x is 
of the form

x = a Si ij j
j=1

M

∑ � (10)

where aij, j = 1,..., M are constant mixing coefficients and 
sj, j = 1,..., M are the M unknown source signals. Even for 
a fairly small number of sources, the distribution of the 
mixture xk is usually close to Gaussian. In a very simple 
way, the central limit theorem can be stated to be the sum 
of even two independent identically distributed random 

variables that are more Gaussian than the original random 
variables. This implies that independent random vari-
ables are more nongaussian than their mixtures. Hence, 
nongaussianity is a measure of independence. This is one 
of the bases of independent component analysis.

3.1.2 Kurtosis

The Central limit theorem discussed above provides a 
good intuitive idea that nongaussianity is a measure of 
independence. The first quantitative measure of non-
gaussianity is kurtosis, which is the fourth order moment 
of random data. Given some random data y, the kurtosis 
of y denoted by kurt(y) is defined as

kurt (y) = E{y4} − 3E{y2}� (11)

where E{.} is the statistical expectation operator. For 
simplicity, if we assume y to be normalized so that 
the variance is equal to unity i.e. E{y2} = 1, then kurt 
(y) = E{y4} − 3. This indicates that kurtosis is simply the 
normalized version of the fourth moment E{y4}.

For a Gaussian y, the fourth moment equals to 3(E{y2})2. 
So for Gaussian random variables, the kurtosis value is 
zero and for nongaussian random variables the kurto-
sis value is non-zero. It may particularly be noted that 
when the kurtosis value is positive, the random vari-
ables are called supergaussian or leptokurtic and when 
the kurtosis value is negative, the random variables are 
called subgaussian or platykurtic. Supergaussian random 
variables have a ‘spiky’ probability density function, 
with heavy tails, and subgaussian random variables 
have a flat probability density function. Nongaussianity 
is measured by the absolute value of kurtosis. The 
square of kurtosis can also be used. These measures are 
zero for a Gaussian variable and greater than zero for 
most nongaussian random variables. As the value of 
kurtosis goes away from zero, the distribution moves 
away from the Gaussian distribution i.e. it becomes 
more nongaussian. However, kurtosis is very sensitive 
to outliers in data set and this is a limitation of kurtosis 
as the contrast function.

3.1.3 Negentropy

A second optimal quantitative measure of nongaussi-
anity is negentropy which is based on the information 
theoretic differential entropy. The entropy of data is 
related to the information that is observed. The more 
random and unpredictable the data is, the larger entropy 
it will have. The entropy S of a random variable y with 
a density of p(η) is

S(y)= P ( )logp ( )dp ( )x y y− ∫ η η η � (12)
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A fundamental result of information theory is that a 
Gaussian variable has the largest entropy among all ran-
dom variables of equal variance. This means that entropy 
could be used as a measure of nongaussianity. This shows 
that the Gaussian distribution is the ‘most random’ or 
least structured of all distributions. Entropy is small for 
distribution that is clearly concentrated on certain values 
i.e. when the variable is clearly clustered or has a pdf that 
is very ‘spiky’ which means the distribution is away from 
Gaussian distribution. A measure of nongaussianity that 
is zero for a Gaussian variable and always nonnegative 
is obtained by using a normalized version of differential 
entropy called negentropy. Thus, negentropy is the maxi-
mum for nongaussian random variable. Negentropy of 
y denoted by H(y) is defined as

H(y) = S(ygauss) − S(y)� (13)

where ygauss is a Gaussian random variable with the same 
correlation and covariance as y. Since the negentropy 
is normalized, it is always nonnegative and zero if y is 
Gaussian distributed. Negentropy has the additional 
interesting property that it is invariant for invertible 
linear transformations.

3.1.4 Approximations to Negentropy

However, negentropy is practically difficult to com-
pute and requires complex computation. A method 
of approximating negentropy is using higher order 
cumulants using polynomial density expansions.  
Using Gram-Charlier expansion in the pdf of y, the 
following approximation for negentropy results may 
be worked out:

H(y)=
1
2

E{y } +
1

48
kurt(y)3 2 2 � (14)

This approximation often leads to the use of kurtosis as 
a contrast function. If some nonquadratic function G is 
used, then the approximations to negentropy in terms of 
expectation of the function G is expressed as -

H(y) = K[E{G(yi)} − E{G(v)}]
2� (15)

where K is a constant and v is a Gaussian variable of 
zero mean and unit variance. Wise choice of G makes a 
good contrast function H(y) for optimization in ICA. It 
may be particularly noted that if G is chosen such that 
it does not grow too fast, then more robust estimators 
are obtained. The frequent choices of G that have proved 
useful are:

G (y)=
1

log cosh( y)1
1

1a
a � (16)

G (y)=
1
a

exp(-a y /2)2
2

2
2− � (17)

G (y)=
1
4

y3
4 � (18)

where a1 and a2 are constants. The choice of G as in (18) 
makes negentropy approximated to kurtosis-based cost 
function. Under the approximation,

E u{( )( )}w z wI
T

I
T = δ � (19)

where δ is known as Kronecker delta function.

H(y) expression in equation simplifies to

H(w) = E{G(wTz)}� (20)

which is a good contrast function for optimization in 
ICA problems.

3.2	 Mutual Information

Mutual information is a natural measure of dependency 
between random variables i.e. it is a measure of the 
information that a member of a set of random variables 
has on the other random variable in the set.

If y is a n-dimensional random variable and py(η) its 
probability density function, then vector y has mutually 
independent components, if and only if

p ( ) p ( )p ( )...p ( )y y1 y2 2 y3 nη η η η= 1 � (21)

A natural way of checking whether y has ICs is to measure 
a distance between both sides of the above equation.

I(py) = δ(py,∏pyi)� (22)

The average mutual information of y as given by 
Comon [5] as p(η)

I p p
p

p
dy y

y

y

( ) ( ) log
( )

( )
=









∏∫ η

η
η

η � (23)

The average mutual information vanishes if and only 
if the variables are mutually independent and are oth-
erwise strictly positive. In terms of negentropy, mutual 
information is written as -

I(y1, y2,..., yn) = H(y) − ∑ H(yi)� (24)

But the contrast functions based on mutual information 
discussed above require the estimation of the density 
function and this has severely restricted the use of these 
contrast functions.
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Before these optimization functions are used in the ICA 
optimization algorithm, the observed data is processed 
as described in the following section:

4.	 Preprocessing of Data for ICA

Generally, ICA is performed on multidimensional data. 
This data may be corrupted by noise, and several original 
dimensions of data may contain only noise. So if ICA is 
performed on a high dimensional data, it may lead to poor 
results due to the fact that such data contain very few 
latent components. Hence, reduction of the dimensional-
ity of the data is a preprocessing technique that is carried 
prior to ICA. Thus, finding a principal subspace where the 
data exist reduces the noise. Besides, when the number of 
parameters is larger, as compared to the number of data 
points, the estimation of those parameters becomes very 
difficult and often leads to over-learning. Over learning 
in ICA typically produces estimates of the independent 
components that have a single spike or bump and are 
practically zero everywhere else [5]. This is because in the 
space of source signals of unit variance, nongaussianity is 
more or less maximized by such spike/bump signals.

Apart from reducing the dimension, the observed signals 
are centered and decorrelated. The observed signal X is 
centered by subtracting its mean:

X←X−E{X}� (25)

Second-order dependences are removed by decorrela-
tion, which is achieved by the principal component 
analysis (PCA) [6,7]. The ICA problem is greatly simpli-
fied if the observed mixture vectors are first whitened. 
A zero-mean random vector z = (zi.....zj)

T is said to be 
white if its elements z are uncorrelated and have unit 
variances E{zizj}  = δi,j

In terms of Covariance matrix, the above equation can 
be restated as,

E{zzT} = I� (26)

where I is the identity matrix. A synonymous term for 
white is sphered. If the density of the vector z is radially 
symmetric and suitably scaled, then it is sphered, but 
the converse is not always true, because whitening is 
essentially decorrelation followed by scaling, for which 
the PCA technique can be used.

The problem of whitening: Given a random vector x 
with n elements, we have to have a linear transformation 
V into another vector z such that

z = V x� (27)

is white or sphered.

Suppose E = [e1.......... en] is the matrix whose columns are 
the unit-norm eigenvectors of the covariance matrix 
Cx = E{xxT}and D = diag[d1.........dn ] is the diagonal matrix 
of the eigenvalues of Cx then Cx = ED ET.This is called the 
eigenvectors decomposition of the covariance matrix. 
The linear whitening transform is expressed as

V D E
1

2 T= −

� (28)

Hence V D E x
1

2 T= −

� (29)

An ICA estimation is now performed on the whitened 
data z, instead of the original data x. For whitened data, 
it is sufficient to find an orthogonal separation matrix, if 
the independent components are assumed white.

Dimensionality reduction by PCA is carried on by pro-
jecting the N dimensional data to a lower dimensional 
space spanned by m (m < N) dominant eigenvectors 
(i.e. eigenvectors corresponding to large eigenvectors) 
of the correlation matrix Cx. The eigenvectors matrix 
E and the diagonal matrix of eigenvectors D are of 
dimension N × m and m × m respectively. Practically, 
it is a nontrivial task to identify the lower dimensional 
subspace properly. For noise free data, a subspace cor-
responding to the nonzero eigenvalues is required to 
be found. In most of the scenario, data are corrupted by 
noise and are not contained exactly within the subspace. 
In this case, the eigenvectors corresponding to the largest 
eigenvalues should describe the data well; however, in 
general, ‘weak’ independent components may be lost 
in the dimension reduction process. This involves a hit 
and trial process.

Dimensionality reduction can also be accomplished 
by methods other than PCA. These methods include 
local PCA [8] and random projection. For noise reduc-
tion, another popular technique called principal factor 
analysis [9] is used.

The unmixing matrix B in Figure1 can be regarded as a 
two step process i.e. whitening and rotation. Hence,

B = WT V� (30)

The whitening matrix V = D
−1
2 ET is estimated by PCA 

and rotation matrix W is found by one of the ICA tech-
niques described in the following section.

Once the data are whitened, the matrix W is necessarily 
orthogonal. This reduces the number of parameters to be 
estimated and enables the use of efficient optimization 
techniques. The fact that W is an orthogonal matrix in 
the ICA problem endows the parameter space with addi-
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tional structure, which can be exploited by optimization 
algorithm. This process can be depicted in Figure 3.

5.	 Algorithms for ICA

Some of the ICA algorithms require a preprocessing 
of data X and some may not. Algorithms that need no 
preprocessing (centering and whitening) often converge 
better with whitened data. However, in certain cases, if 
it is necessary, then sphered data Z is used. There is no 
other mention of sphering done for cases where whitened 
is not required.

5.1	 Non-linear Cross Correlation based Algorithm

The principle of cancellation of nonlinear cross cor-
relation is used to estimate independent components 
in [10,11]. Nonlinear cross correlations are of the form 
E{g1(yi)g2(yj)}, where g1 and g2 are some suitably chosen 
nonlinearities. If yi and yj are independent, then these 
cross correlations are zero for yi and yj, having sym-
metric densities. The objective function in such cases is 
formulated implicitly and the exact objective function 
may not even exist. Jutten and Herault, in [5], used this 
principle to update the nondiagonal terms of the matrix 
W according to

ΔWij ∞ g1(yi)g2(yj)  for i ≠ j� (31)

Here yi are computed at every iteration as y = (I + W)−1z 
and the diagonal terms Wij are set to zero. After conver-
gence, yi give the estimates of the independent compo-
nents. However, the algorithm converges only under 
severe restrictions [12].

5.2	 Nonlinear Decorrelation Algorithm

To reduce the computational overhead by avoiding 
matrix inversions in the Jutten-Herault algorithm and to 
improve stability, some algorithms have been proposed 
in [13]. Among these, the following algorithm has been 
proposed:

ΔW ∞ (I − g1(y)g2(y
T)) W� (32)

where y = Wx, the nonlinearities g1(.) and g2(.) are 

applied separately on every component of the vector 
y, and the identity matrix can be replaced by any posi-
tive definite diagonal matrix. The equivariant adaptive 
separation via independence (EASI) algorithm has been 
proposed in [14,15].

According to EASI,

ΔW ∞ (I − yyT − g(y) yT + yg(yT)) W� (33)

The choice of the nonlinearities used in the above rules 
is generally provided by the maximum likelihood (or 
infomax) approach.

5.3	 Infomax Estimation or Maximum Likelihood 
Algorithm

Maximum likelihood (ML) estimation is based on 
the assumption that the unknown parameters to be 
estimated θ are constants or no prior information is 
available on them. When the number of samples is large, 
ML estimator becomes a desirable choice owing to its 
asymptotic optimality properties. The ML estimation 
can be simply interpreted as follows: those parameters 
having the highest probability for the observations act 
as the estimates. The simplest algorithm for maximizing 
the likelihood (also log-likelihood) is given by Bell and 
Sejnowski [16] by using stochastic gradient methods. 
The algorithm for ML estimation derived by Bell and 
Sejnowski in [16] is

ΔW ∞ [WT ]−1 + E{g(Wx)xT}� (34)

Here the nonlinearity g is very often chosen as tanh 
function because it is the derivative of log density  
of the logistic distribution. This function works for esti-
mation of most super-gaussian independent components; 
however, other functions should be used for subgauss-
ian independent components. The convergence of the 
algorithm described by the above equation is very slow, 
especially due to the inversion of the matrix W that is 
needed at every step. The convergence of the algorithm 
can be improved by whitening the data and by using 
the natural gradient.

The natural (or relative) gradient method simplifies the 
maximization of the likelihood and makes it better con-
ditioned. The natural gradient principle is based on the 
geometrical structure of parameter space. This is related 
to the relative gradient principle, which uses the Lie 
group structure of the ICA problem. In the case of basic 
ICA, both these principles amount to multiplying the 
right side of the above equation by WTW. This gives

ΔW ∞ (I + E{g(y)yT}) W� (35)

Figure 3: Schematic of separation: whitening and rotation. 
The unmixing matrix B in Figure 1 can be regarded as a con-
catenation of the whitening matrix V and the (orthogonal) 
rotation matrix W
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where y = Wx. After this modification, the algorithm 
needs no sphering. This algorithm can be interpreted 
as a special case of nonlinear decorrelation algorithm, 
which has been described in previous section.

A Newton method for maximizing the likelihood  
has been introduced in [26]. Though it converges with  
less iteration, it suffers from the problem that a matrix 
inversion is needed in each iteration.

Infomax principle [16] is a very closely related to maxi-
mum likelihood estimation principle for ICA [17]. This is 
based on maximizing the output entropy or information 
flow of a neural network with nonlinear outputs. Hence, 
it is named as infomax.

5.4	 Nonlinear PCA Algorithm

Another approach to ICA that is related to PCA is the  
so-called nonlinear representation, which is sought 
for the input data that minimizes a least mean square 
error criterion. For, linear case principal components 
are obtained, and, in some cases, the nonlinear PCA 
approach gives independent components instead. In 
[10], the following version of a hierarchical PCA learning 
rule is introduced.

w g y x g y g y wi i
j

i

i j∞ ( ) − ( ) ( )
=
∑

1
� (36)

where g is a suitable nonlinear scalar function. The intro-
duction of nonlinearities means that the learning rule 
uses a higher order information in the learning. In [18], it 
is proven that for well chosen non-linearities, the learning 
rule in the above equation does indeed perform ICA, if 
the data is whitened. Algorithms for exactly maximizing 
the nonlinear PCA criteria are introduced in [11].

5.5	 One-unit Neural Learning Rules

Simple algorithms from the one-unit contrast functions 
can be derived using the principle of stochastic gradi-
ent descent. Considering the whitened data, Hebbian 
like learning rule [19, 20] is obtained by taking instan-
taneous gradient of contrast function with respect to w. 
The rule is

Δw ∝ [E{G(wTx)} − E{Gv)}] × g(wTx)� (37)

Such one-unit algorithms were first introduced in [21] 
using kurtosis. For estimation of several independent 
components of system of several units such one-unit 
algorithms are needed.

5.6	 Tensor based ICA Algorithm

Another approach for the estimation of independent 

components consists of using higher-order cumulant 
tensors. Tensors are generalizations of matrices, or 
linear operators. Cumulant tensors are generalizations 
of the covariance matrix Cx. The covariance matrix is 
the second order cumulant tensor, and the fourth order 
tensor is defined by the fourth-order cumulants as 
cum(xi,xj,xk,xl).

Eigenvalue-Decomposition (EVD) is used to whiten the 
data. Through whitening, the data is transformed so that 
its second-order correlations are zero. This principle can 
be generalized so that the off-diagonal elements of the 
fourth-order cumulant tensor can be minimized. This 
kind of (approximate) higher-order decorrelation results 
in a class of methods for ICA estimation.

Joint approximate diagonalization of eigenmatrices 
(JADE) proposed by Cardoso [6] is based on the principle 
of computing several cumulant tensors F(Mi), where F 
represents the cumulant tensor and Mi represents the 
eigenmatrices. These tensors are diagonalized jointly  
as well as possible. If a matrix W diagonalizes F(M) for 
any M, then W F(M) WT is diagonal since the matrix F 
is a linear combination of the T terms wiwi, assuming 
that the ICA model in equation (1) holds. A measure of 
the diagonality of Q = WF(Mi)W

T is the sum of squares 
of the off-diagonal elements ∑ ≠l q

2. In other words, 
since the matrix W is orthogonal and it does not k kl 
change the total sum of squares of a matrix, the minimi-
zation of the sum of the squares of the off-diagonal ele-
ments is equivalent to the maximization of the squares of 
the diagonal elements. Thus, the following function can 
be a good measure of the joint diagonalization process.

J (W) diag(WF(M )W )JADE 1
T 2= ∑   � (38)

This represents the sum of the squares of all the diagonal 
elements of all the diagonalized cumulant tensors.

Mi are chosen as the eigenmatrices of the cumulant ten-
sor because the n eigenmatrices span the same subspace 
as the cumulant tensor, and, hence, they contain all the 
relevant information on the cumulants. With this choice, 
the contrast function expressed in the above equation 
can be restated as -

J W cum y y y yJADE ijkl iikl i j k( ) = ( )≠∑ , , , 1
2

� (39)

where y is the estimate of the independent sources 
obtained as y = Wx. The above equation means that by 
minimizing JJADE, the sum of the squared cross cumulants 
of yi is also minimized. But JADE is restricted to small 
dimensions, mostly due to the computational complexity 
of the explicit tensor EVD. Its statistical properties are 
inferior to methods using likelihood or nonpolynomial 
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cumulants [22]. However, with low dimensional data, 
JADE is a competitive alternative to the most popular 
FastICA algorithms described in the next section.

A similar approach that uses the EVD is the fourth-order 
blind identification (FOBI) method [7], which is simpler 
and which deals with the EVD of the weighted correla-
tion matrix. It is of reasonable complexity and is probably 
the most efficient of all the ICA methods. However, it 
fails to separate the sources when they have identical 
kurtosis. Other approaches include maximization of 
squared cumulants [23], and fourth-order cumulant 
based methods as described in [24,25].

5.7	 Fast ICA Algorithm

One of the most popular solutions for linear ICA/BSS 
problem is Fast ICA [26], owing to its simplicity and 
fast convergence. The basic algorithm involves the 
preprocessing and a fixed-point iteration scheme for 
one unit.

5.7.1 Fixed-point Iteration for One Unit

The fast ICA algorithm for one unit estimates one row 
of the demixing matrix W as a vector wT, which is an 
extremum of contrast functions. FastICA [19, 26] is an 
iterative fixed point algorithm, derived from a general 
objective or a contrast function. Assume x is the whitened 
data vector and wT is one of the rows of the rotation/
separating matrix W. Estimation of w proceeds iteratively 
with the following steps, until a convergence, as stated 
below, is achieved.

1)	 Choose an initial random vector w of unit norm.
2)	 w ← E{zg (wT z)} − Eg ‘(Tw)� (40)

where g1(y) = y3 (derivative of kurtosis),

g2 (y) = tanh(ay), 1 ≤ a ≤ 2

and g’(y) are the corresponding derivatives.

3) w ← w / || w || where ||w|| is the norm of w.
4) if wold − wnew

≤ε is not satisfied, then go back to step 2, where ε is 
a -4 convergence parameter (~10) and wold is the value 
of w before its replacement by the newly calculated 
value wnew.

5.7.2 Fixed-point Iteration for Several Units

The independent components (ICs) can be estimated 
one by one, using the deflationary approach, or they 
can be estimated simultaneously, using the symmet-
ric approach. In the deflationary approach, it must be 

ensured that the rows wj of the separating matrix W are 
orthogonal. This can be done after every iteration step, 
by subtracting from the current estimate wp the projec-
tions of all previously estimated p−1 vectors, before 
normalization.

W W (W W )Wp p P
T

j
j=1

p 1

j← −
−

∑ � (41)

In the symmetric approach, the iteration step is computed 
for all wp and after the matrix W is orthogonalized, as -

W (WW ) WT← − 1
2 � (42)

The convergence properties of the FastICA algorithm are 
discussed in [26, 27]. The asymptotic convergence of the 
algorithm is at least quadratic and usually cubic when 
the ICA model (1) holds. This rate is much faster than 
that of gradient-based optimization algorithms. With a 
kurtosis-based contrast function, FastICA can be shown to 
converge globally to the independent components [19].

5.8	 Algebraic ICA Algorithm

An algebraic solution to ICA is proposed by Taro 
Yamaguchi et al. in [28]. This is a noniterative algorithm 
but becomes extremely complex to compute when the 
number of sources goes more than two. For two sources 
separation, it works very fast. Two observed signals 
x1and x2 are given by linear mixture of two independent 
original signals s1 and s2 as -

x
x

s
s

1

2

1

2









 =




















1
1
α

β � (43)

where α and β are unknown mixing rates.

The algebraic solution to α and β are given by -

β
α
α

=
−
−

C C
C C

2 3

3 1

� (44)

(C2C10 − C11C3)α
4 + (3C9C3 − 3C8C2 − C3C10 + C1C11)α

3

+ (3C6C2 + 3C8C3 − 3C9C1 − 3C7C3)α
2

+ (C5C3 + 3C7C1 − 3C6C3 − 3C2C4)α

+ (C3C4 − C1C5) = 0� (45)

where

C1 = E[x1
2] − {E[x1]}

2
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C2 = E[x2
2 ] − {E[x2 ]}

2

C3 = E[x1x2] − E[x1]E[x2]

C4  = E[x1
4] − E[x1

3]E[x1]

C5 = E[x1
3x2] − E[x1

3]E[x2]

C6 = E[x1
3x2] − E[x1

2x2]E[x1]

C7 = E[x1
2x2

2 ] − E[x1
2x2]E[x2 ]

C8 = E[x1
2x2

2] − E[x1x
2
2]E[x1]

C9 = E[x1x
3
2] − E[x1x

2
2]E[x2]

C10 
=  E[x1x

 3
2] − E[x1]E[x2

3]

C11 = E[x2
4 ] − E[x32]E[x2]� (46)

where E[.] denotes the expectation operation.

α and β are obtained by solving the equations (44,45,46) 
with the Ferrari method. Excluding the solutions having 
non-zero imaginary parts and negative sizes, the proper 
solution is selected. Original independent signals  
are computed from equation (43) by solving value of α 
and β.

5.9	 Evolutionary ICA Algorithm

Evolutionary computation techniques are very popular 
population search based optimization methods. Genetic 
Algorithms, Swarm intelligence are the most used 
evolutionary computation based optimization tech-
niques. Through the evolutionary mechanism, genetic 
algorithms (GA) can search for the optimal separat-
ing matrix that minimizes the dependence. Instead of 
updating the matrix by a fixed formula, GA transforms 
a population of individuals into a new population using 
genetic operators, based on fitness function. However, 
the success of GA relies on the definition of fitness func-
tion. The population based search methods like GA con-
verge to a global optimum, unlike the case of gradient 
based methods which get trapped in local optima. GA 
has been used for nonlinear blind source separation in 
[29,30] and for noise separation from electrocardiogram 
signals in [31]. Particle swarm optimization (PSO) has 
been used in ICA technique in [32] Currently, several 
biologically motivated optimization algorithms are also 
being used in ICA method. However, the price paid by 
evolutionary computation based ICA techniques is the 
heavy computational complexity of the methods. But 
with the advent of highly parallel processors, these meth-

ods provide competitive solutions to the problems.

5.10	 Kernel ICA Algorithm

Kernel ICA [33] is a class of algorithms for independent 
component analysis (ICA), which use contrast functions 
based on canonical correlations in a reproducing kernel 
Hilbert space.

The ICA problem is based not on a single nonlinear 
function, but on an entire function space of candidate 
nonlinearities. In particular, the algorithm works with 
the functions in a reproducing kernel Hilbert space and 
makes use of the ‘kernel trick’ to search over this space 
efficiently. The use of a function space makes it possible 
to adapt to a variety of sources and thus makes these 
algorithms more robust to varying source distributions.

A contrast function is defined in terms of a direct mea-
sure of the dependence of a set of random variables. 
Considering the case of two univariate random variables 
x and x, for simplicity, and letting F be a vector space of 
functions from R to R, the F12 ρ correlation F is defined as 
the maximal correlation between the random variables 
f(x1) and f(x2), where f1and f2range over

f1f2F
ρF 1 1 2 2max corr(f (x ),f (x ))= � (47)

If the variables x and x are independent, then the  
F-correlation is equal to zero. Also, if 12 the set F is large 
enough, the converse is true. Hence, the basic idea of 
Kernel ICA is first to map the input space into a fea-
ture space via a nonlinear map and then to extract the 
independent components from multivariate data. First, 
it estimates the dominant ICs and the directions using 
PCA and then it performs conventional ICA to update 
the dominant ICs while maintaining the variance.

The performance of Kernel ICA is robust, with respect 
to the source distributions. The Kernel ICA algorithms 
are particularly insensitive to asymmetry of the prob-
ability density function, when compared to the other 
algorithms. It is also reported [33] to yield smaller Amari 
error than other ICA algorithms.

Independent component analysis (ICA) algorithms are 
known to have difficulties when the sources are nearly 
Gaussian. The performance of all algorithms degrades 
as the kurtosis approaches zero, but the Kernel ICA  
algorithms are more robust to near-Gaussianity than 
other algorithms. The Kernel ICA methods are sig-
nificantly more robust to outliers than the other ICA 
algorithms. However, they are slower than other algo-
rithms.
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5.11	 Some Extensions to ICA Algorithm

5.11.1	 Noisy ICA Algorithm

The estimation of the noiseless model seems to be a 
challenging task in itself, and, therefore, the noise is 
usually neglected, in order to obtain tractable and simple 
results. Moreover, it may be unrealistic in many cases to 
assume that the data could be divided into signals and 
noise in any meaningful way. Perhaps the most prom-
ising approach to noisy ICA is given by bias removal 
techniques. This means that noise free ICA methods 
are modified, so that the bias due to noise is removed 
or at least partially removed. In [34], bias reduction is 
performed by modifying the natural gradient ascent for 
likelihood. The new concept of Gaussian moments is 
introduced in [35], to derive one-unit contrast functions 
and to obtain a version of the fast ICA algorithm that 
has no asymptotic bias i.e. it is consistent even in the 
presence of noise. These techniques can even be used 
in large dimensions. In [36], J. Cao et al. have proposed 
a robust approach for independent component analysis 
(ICA) of signals that observations are contaminated with 
high-level additive noise and/or outliers.

5.11.2	 Complex ICA Algorithm

Separation of complex valued signals is a frequently 
arising problem in signal processing. For example, sepa-
ration of convolutively mixed source signals involves 
computations on complex valued signals. The FastICA 
algorithm can be extended to complex valued signals. 
In [37], it is assumed that the original, complex valued 
source signals are mutually statistically independent, 
and the problem is solved by the independent compo-
nent analysis (ICA) model.

5.11.3	 Nonlinear ICA Algorithm

In most of the practical cases, the linear mixtures pass 
through a certain type of nonlinearity, before being actu-
ally observed. Most often, the observing sensor intro-
duces the nonlinearity by itself. So ICA must perform 
the separation from these observed nonlinear mixtures. 
The case of ICA for post nonlinear mixtures has been an 
area of interest for researchers [29,30].

6.	 Ambiguities of ICA

6.1	 Permutation Ambiguity

The order of independent components cannot be 
determined. The linear noise free version of the ICA 
model can be represented as

X a s = ASi i
i=1

N

= ∑ � (48)

Both A and S being unknown, the order of the terms 
can be changed freely in the above equation and any of 
the independent components can be called the first one. 
This implies that the correspondence between a physical 
signal and the estimated independent component is not 
one-to-one. This indeterminacy is particularly severe in 
many applications, where identification of the estimated 
components is of very high importance. Formally, this 
means that the following relation between the mixing 
matrix A and the separation matrix B holds.

AB = P� (49)

where P is a permutation matrix.

6.2	 Scaling Ambiguity

The energy of the independent components cannot be 
determined. Since both A and S are unknown, the effect 
of multiplication of one of the source estimates with a 
scalar constant k is canceled by dividing its correspond-
ing column in the mixing matrix by k. This indeterminacy 
can be solved by ensuring that the random variables have 
unit variance i.e.,

E{si
2} = 1� (50)

This still leaves the ambiguity of sign. While this is insig-
nificant in certain applications, care has to be taken in 
applications where sign plays a crucial role.

7.	 Applications of ICA

Independent component analysis (ICA) being a blind 
statistical signal processing, the technique finds appli-
cation in many emerging new application areas such 
as blind separation of mixed voices or images [38,39], 
analysis of several types of data [5], feature extraction 
[12], speech and image recognition [40,17], data com-
munication [41], sensor signal processing [42,14], sys-
tem identification [43,44], biomedical signal processing 
[45,46,13,29] and several others [30,47].

7.1	 Biomedical Signal Processing

Magnetoencephalography (MEG) is a noninvasive tech-
nique by which the activity or the cortical neurons can 
be measured with very good temporal resolution and 
moderate spatial resolution. When using a MEG record, 
as a research or clinical tool, the investigator may face a 
problem of extracting the essential features of the neuro-
magnetic signals in the presence of artifacts. The ampli-
tude of the disturbances may be higher than that of the 
brain signals and the artifacts may resemble pathological 
signals in shape. In [48], a new method to separate brain 
activity from artifacts using ICA has been introduced.
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7.2	 Telecommunications

Finally, another emerging application area of great 
potential is telecommunications. An example of a 
real-world communications application where blind 
separation techniques are useful is the separation of the 
user’s own signal from the interfering other users’ sig-
nals in CDMA (Code-Division Multiple Access) mobile 
communications [49]. This problem is semi-blind, in 
the sense that certain additional prior information is 
available on the CDMA data model. But the number of 
parameters to be estimated is often so high that suitable 
blind source separation techniques, taking into account 
the available prior knowledge, provide a clear perfor-
mance improvement over more traditional estimation 
techniques.

7.3	 Revealing Hidden Factors in Financial Data

It is a tempting alternative to try ICA on financial data. 
There are many situations in that domain of finance in 
which parallel time series are available, such as currency 
exchange rates or daily returns of stocks, which may 
have some common underlying factors. Independent 
component analysis (ICA) might reveal some driving 
mechanisms that may otherwise remain hidden. In a 
recent study of a stock portfolio [50] it was found that 
ICA is a complementary tool to PCA, allowing the 
underlying structure of the data to be more readily 
observed.

7.4	 Natural Image Denoising

Bell and Sejnowski proposed a method to extract 
features from natural scenes by assuming a linear image 
synthesis model [51]. In such a model, each patch of 
an image is a linear combination of several underlying 
basis functions. A set of digitized natural images were 
used. The vector of pixel gray levels in an image window 
is denoted by x. Note that, multi-valued time series or 
images changing with time are not considered here; 
instead the elements of x are indexed by the location 
in the image window or patch. The sample windows 
were taken at random locations. The 2-D structure of the 
windows is of no significance here; row by row scanning 
was used to turn a square image window into a vector 
of pixel values. Each window corresponds to one of the 
columns ai of the mixing matrix A. Thus, an observed 
image window is a superposition of these windows with 
independent coefficients [51].

Now, suppose a noisy image model holds:

z = x + n� (51)

where n is uncorrelated noise, with elements indexed 
in the image window in the same way as x, and z is the 

measured image window corrupted with noise. Let us 
further assume that n is Gaussian and x is nongaussian. 
There are many ways to clean the noise. One example 
is to make a transformation to spatial frequency space 
by discrete fourier transform (DFT), do low-pass filter-
ing, and to return to the image space by inverse discrete 
fourier transform (IDFT). This is not very efficient, 
however. A better method is the recently introduced 
Wavelet Shrinkage method [52], in which a transform 
based on wavelets is used, or methods based on median 
filtering are used. However, it may be noted that none 
of these methods explicitly takes advantage of the image 
statistics.

7.5	 Feature Extraction

Independent component analysis (ICA) is successfully 
used for face recognition and lip reading. The goal in 
face recognition is to train a system that can recognize 
and classify familiar faces, given a different image of 
the trained face. The test images may show the faces in 
a different pose or under different lighting conditions. 
Traditional methods for face recognition have employed 
PCA-like methods. Bartlett and Sejnowski [53] compare 
the face recognition performance of PCA and ICA for 
two different tasks: (1) different pose and (2) different 
lighting condition. They show that for both tasks, ICA 
outperforms PCA. The method is roughly as follows: 
The rows of the face images constitute the data matrix 
x. Performing ICA, a transformation W is learned so 
that u (u = Wx) represents the independent face images. 
The nearest neighbor classification is performed on the 
coefficients of u.

7.6	 Nonlinear Process Monitoring

The production processes of chemical, pharmaceutical 
and biological products being nonlinear involve 
intricate methods of monitoring. Zhang and Qin in 
[54] develop a process monitoring method based on 
multiway kernel independent component analysis, 
which extracts some dominant independent compo-
nents that capture nonlinearity from normal operating 
process data and combine them with statistical process 
monitoring techniques. They apply the method to fault 
detection in a fermentation process. However, there are 
certain drawbacks of original KPCA and KICA, which 
are as follows: the data mapped into feature space 
become redundant; linear data introduce errors while 
the kernel trick is used; computation time increases 
with the number of samples. In [55] Zhang and Qin 
improve KPCA and KICA for nonlinear fault detection 
and statistical analysis.

A novel technique is proposed in [56], which combines 
the advantage of both kernel principal component 
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analysis (KPCA) and Kernel ICA (KICA) to develop 
a nonlinear dynamic approach to detect fault online, 
compared to other nonlinear approaches.

7.7	 Sensor Signal Processing

A sensor network is a very recent, widely applicable and 
challenging field of research. As the size and cost of sen-
sors decrease, sensor networks are increasingly becoming 
an attractive method to collect information in a given area. 
Multi-sensor data often presents complementary informa-
tion about the region surveyed and data fusion provides 
an effective method to enable comparison, interpretation 
and analysis of such data. Image and video fusion is a 
sub area of the more general topic of data fusion, deal-
ing with image and video data. Cvejic et al [42]. have 
applied independent component analysis for improving 
the fusion of multimodal surveillance images in sensor 
networks. Independent component analysis (ICA) is also 
used for robust automatic speech recognition [57].

8.	 Conclusions

In this chapter, the basic principle behind the indepen-
dent component analysis (ICA) technique is discussed. 
The contrast functions for different routes to indepen-
dence are clearly depicted. Different existing algorithms 
for ICA are briefly illustrated and are critically examined, 
with special reference to their algorithmic properties. 
The ambiguities present in these algorithms are also 
presented. Finally, the application domains of this novel 
technique are presented. Some of the futuristic works 
on ICA technique, which need further investigation, 
are development of nonlinear ICA algorithms, design of 
low complexity ICA algorithms and use of evolutionary 
computing optimization tools for developing ICA and, 
finally, alleviation of permutation and scaling ambigui-
ties existing in present ICA.
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