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Abstract. We consider beam propagation in photorefractive media, where
the pulse dynamics is governed by a set of coupled nonlinear Schrödinger-type
equations. We construct anharmonic oscillator equations using the Stokes
parameters and find a solution for bright spatial solitons in photorefractive
media. We then reduce the anharmonic oscillator to the well-known undamped
and unforced Duffing oscillator equation. From this equation, we present the
necessary conditions for the formation of both bright and dark screening
solitons, and obtain solutions for both of them.

1. Introduction
In recent years, soliton researchers have paid much attention to the investiga-

tion of spatial solitons after realizing their potential applications, such as all-optical
switching, three-dimensional optical interconnects [1] and waveguide applications
[2, 3]. These spatial solitons relied on the optical Kerr effect wherein the refractive
index of the material increases in proportion to the intensity of the light. The
resulting self-trapped beams are called Kerr spatial solitons. These solitons are
found to have two major drawbacks. The first is that the creation of such
spatial solitons in Kerr-type material requires a high light intensity, i.e. high
power. The second is that these solitons are stable only in one dimension.
Attempts to overcome these drawbacks gave birth to a new class of solitons called
‘photorefractive solitons’.

Researchers [4–7] have shown recently that spatial solitons can be created with
very low laser power in photorefractive (PR) materials. Segev et al. [4] successfully
predicted the photorefractive spatial soliton, and since then it has been extensively
studied. PR solitons exhibit several interesting properties. First, these PR solitons
are found to be stable in both transverse dimensions and can be created even at low
power [7]. In addition to these properties, PR screening soliton beams can also
induce waveguiding and can guide intense light beams, which is photorefractively
less sensitive [8].

An optical beam propagating through a PR crystal biased with a DC electric
field excites charge carriers, which drift and become retrapped on impurity
centers. This results in the build-up of a space charge field, which screens out
the externally applied field. The spatially varying electric field can increase or
decrease the index of refraction depending on the polarity of the applied field,
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i.e. the refractive index change resulting from the nonuniformly screened electric
field can have either a self-focusing or a defocusing effect thereby producing so-
called bright and dark screening spatial solitons. The aforementioned interesting
properties make the screening solitons (both bright and dark) attractive for
practical applications. Also the screening solitons provide a useful tool in experi-
mental verification of theoretical predictions regarding generic properties of indi-
vidual solitons as well as their interactions. Zhigang Chen et al. [9] investigated the
interaction of these photorefractive screening solitons and have experimentally
confirmed these results.

In this paper we provide a theoretical study of spatial solitons in coupled
photorefractive media. The paper is arranged as follows. In section 2, we present
the necessary theoretical model related to this work. We discuss the construction of
an integro-differential equation in section 3. Anharmonic and undamped Duffing
oscillators are discussed in section 4. We derive the necessary condition for the
formation of both bright and dark solitons in section 5, and then finally we give
results and conclusions.

2. Theoretical model
The theoretical model for one-dimensional PR screening solitons in biased

photorefractive media is well known [1,10]. For convenience of the analysis, a light
beam is assumed to propagate in a PR crystal in the x-direction. The electric field
component E of the light beam satisfies the following equation [11]:

r2E þ kn̂nbð Þ
2 E ¼ 0, ð1Þ

where the term k is equal to 2pnb/�, � is the free-space wavelength, ðn̂nbÞ
2
¼

n2b � n4br33Esc is the perturbed extraordinary refractive index, r33 is the electro-
optic coefficient, nb is the unperturbed refractive index, and Esc ¼ Escx̂x is the
induced space-charge field. The equation (1) is considered to be the fundamental
equation for the slowly varying spatial amplitude of the optical field and a set of
charge-transport equations that describe the photorefractive effect in a nonlinear
medium. These equations reduce to a single nonlinear equation as follows:
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where �n(Esc) is the change in refractive index, which is driven by the space-
charge field Esc(x, z) through the electro-optic effect:

�nðEscÞ ¼ �
1

2
n3br33Esc: ð3Þ

With a PR crystal of strontium barium niobate (SBN), the most favorable
configuration for soliton formation is when the crystalline c axis is parallel to
the x direction, which is also the direction of beam polarization, and has a large
electro-optic coefficient r33. Under appropriate conditions, the steady-state
space-charge field is given (approximately) by

Esc ¼ E0
I1 þ Id

Iðx, zÞ þ Id
, ð4Þ
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where E0 is the space charge field at x!�/, and it is approximately equal to �V/l,
i.e., the voltage V applied across the crystal of width l. I(x, z) is the total intensity
of the two optical beams. I/ ¼ I(x!�/) represents the total intensity far away
from the centre of the beams, and Id is the dark irradiance.

As our prime concern is to analyse spatial solitons in coupled photorefractive
media, the above equation can be extended to the case of two optical beams
co-propagating in a photorefractive medium. Therefore in steady state, the
coupled wave equations can be written as
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where �(x, z) and �(x, z) are the slowly varying amplitudes of the two optical
fields, and x and z are the transverse and longitudinal coordinates, respectively.

For convenience, we transform this envelope equation into a normalized
equation by the substitutions � ¼ z/ðkx20Þ, � ¼ x/x0, � ¼ (2 �0 Id/nb) u and � ¼

(2�0Id/nb)v. Now equation (5) can be written as two coupled nonlinear equations in
dimensionless variables [8]:
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where � ¼ I//Id, � ¼ 1/2(kx0)
2nb

2r33E0, and x0 is an arbitrary spatial width for
scaling. These are the basic equations we use in our theoretical model.

For further investigation we also include cubic nonlinearity and coupling
between the two beams in the above saturable coupled nonlinear Schrödinger
(SCNLS) equation. Therefore the beam propagation in a coupled photorefractive
media is governed by the following equation [12]:"
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From the above equation it is obvious that the saturable nonlinearity depends on
the total intensity of the light beam and, in general, does not satisfy the additional
properties of solitons such as elastic collision and integrability of the system under
consideration. That is, the total intensity ratio in the denominator of the above
equation breaks the integrability criterion and in general they are non-integrable.
Therefore, to the best of our knowledge, no analytical solitary wave solutions have
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been reported with saturable nonlinearity, but numerical methods have been
applied [4, 19]. However, in this paper, we present analytical stationary solutions
(with saturable nonlinearity) of both bright and dark screening solitons through
the undamped and unforced Duffing oscillator equation.

As we are mainly interested in analysing bright and dark screening solitons in
photorefractive media, we reduce the above SCNLS equations to anharmonic
oscillator type equations, which contain all the information about the SCNLS
equations. Therefore, solution of the anharmonic oscillator equations is equivalent
to solution of the SCNLS equation. We can achieve the above goal using the
Stokes parameters, defined by [13, 14]

s0 ¼ uj j2þ vj j2,

s1 ¼ uj j2� vj j2,

s2 ¼ u�vþ uv�,

s3 ¼ �iðu�v� uv�Þ:

ð8Þ

By using the above four Stokes parameters, we derive a set of so-called integro-
differential equations which appear to be complicated when compared to the
beam-governing equation (7). Therefore, to proceed further, we assume that the
amplitude functions are separable (u ¼ X(�) f(�) and v ¼ Y(�) f(�)), as used by
Akhmediev et al. [15], and the resulting equations are
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where g1 and g2 are nonlinear birefringent coefficients and are related to the
nonlinear beat length by
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where f is a real function defining the common profiles.

3. Construction of anharmonic and Duffing oscillator equation
In this section, we construct the anharmonic oscillator equation from the

integro-differential equations. After finding the bright spatial solution for the
above-mentioned oscillator equation, we show that for a particular special case it
also leads to the bright spatial soliton solution for quadratic nonlinearity. As has
been discussed in the introduction, we reduce the anharmonic oscillator equation
to the well-known undamped Duffing oscillator equation. After constructing the
Hamiltonian from the Duffing oscillator equation, we impose the appropriate
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necessary conditions for the formation of both bright and dark solitons. In order to
derive the anharmonic oscillator equation, it is necessary to find the conserved
quantities. We have the following conserved quantities from the equations (8) and
(9):

S2
0 ¼ S2
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ð10Þ

Now using equation (10) in (9), we obtain the following anharmonic oscillator
equation:
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� aS1 þ bS2

1 þ cS3
1 ¼
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�S0ð Þ
2
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where the parameters a, b, and c are given by
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where B ¼ (�þ �)(�þ l). Equation (11) contains both quadratic and cubic non-
linearity. First let us find the solution of equation (11) with both quadratic and
cubic nonlinearity, which contains all the information of the saturable CNLS
equation. This is equivalent to finding the solution of the SCNLS equation. We
choose the integration constant � ¼ 0 and then integrating equation (11), we get
the following equation:
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We choose the constant of integration C ¼ 0 and then obtain the bright soliton
solution in the form
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: ð12Þ

S1 represents the bright soliton solution in the presence of both quadratic and
cubic nonlinearity. When we set the cubic nonlinearity to zero, we have only
quadratic nonlinearity. Therefore, under this criterion, the solution of equation
(11) reduces to the solution of quadratic nonlinearity in the form

S1 ¼
3a

2b cosh2 ffiffiffi
a

p� �
&=2

: ð13Þ

Our results for the quadratic nonlinearity can easily be checked with earlier
available results [16–18]. The above results simply resemble the family of
stationary localized solutions of two coupled nonlinear equations for the envelopes
of the fundamental and second-harmonic field components.

Similarly, we also analyse equation (11) in the absence of quadratic non-
linearity. Under this criterion, equation (11) reduces to the following unforced and
undamped Duffing oscillator equation [19]:

d2S1

d&2
þ aS1 þ cS3

1 ¼ 0: ð14Þ
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Further, equation (14) is similar to the equations obtained in [20], and therefore
bright and dark spatial screening solitons are easily possible in the above Duffing
oscillator-type equation. For equation (14) the Hamiltonian is found to be
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1

2
: ð15Þ

The phase plane analysis of the Hamiltonian system described by equation (15) is
equivalent to investigating the nature of the stationary waves (both bright and
dark) of equation (7).

4. Necessary conditions for the formation of screening solitons
From the Hamiltonian structure, we present the necessary condition for the

formation of both bright and dark screening solitons:
For bright screening soliton formation:

a < 0, c > 0 and H ¼ 0: ð16Þ

For dark screening soliton formation:

a > 0, b < 0 and H ¼ a2=4b: ð17Þ

Now we apply these conditions to the Hamiltonian equation (15), and we obtain
both the bright and dark screening soliton solutions. For equation (16), we obtain
the bright solitary wave solution as

S1 ¼ �

ffiffiffiffiffiffi
2a

c

r
sech

ffiffiffi
a

p
&: ð18Þ

Similarly by applying the condition (17) we obtain the dark screening soliton
solution as
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Thus we have constructed both bright and dark screening soliton solutions in a
coupled photorefractive media. The terms a and c in the above solutions are the
physical parameters of the system under consideration and they are given in
equation (11). While constructing the screening soliton solution, we do not
perform any series truncation of the nonlinear term in the denominator of equation
(7). Therefore the screening solitons in our model form a new set of solitary wave
solutions.

5. Conclusions
We have considered coupled beam propagation in photorefractive media.

Using the Stokes parameters, we have obtained an anharmonic oscillator equation
(without change in the physical parameters) from the saturable CNLS equation
and obtained the general bright screening soliton solution in the presence of
both quadratic and cubic nonlinearity. As a special case, we have also obtained
the solution for a quadratic nonlinearity, and comparison has been made with
known results. Moreover, in the absence of quadratic nonlinearity, we have
reduced our dynamical system to an unforced and undamped Duffing oscillator.
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After constructing the Hamiltonian, we have provided the necessary conditions for
the formation of both bright and dark screening solitons in coupled photorefractive
media, and finally obtained screening soliton solutions for both of them.
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