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Bright and Dark Bragg Solitons in a
Fiber Bragg Grating

K. Senthilnathan, K. Porsezian, P. Ramesh Babu, and V. Santhanam

Abstract—In this paper, we investigate the nonlinear pulse
propagation through the fiber Bragg grating structure where
the pulse dynamics is governed by the nonlinear-coupled mode
(NLCM) equations. Using the multiple scale analysis, we reduce
the NLCM equations into the perturbed nonlinear Schrödinger
(PNLS) type equation. To construct the bright and dark Bragg
solitons in the upper and lower branches of the dispersion curve,
we solve the PNLS equation using the coupled amplitude-phase
method.

Index Terms—Coupled-mode equation, fiber Bragg grating
(FBG), nonlinear wave propagation, soliton.

I. INTRODUCTION

I T IS WELL KNOWN that the light propagating through a
periodic medium gives rise to the so-called the stop band

wherein the wave vector is imaginary. It physically means that
the wave amplitude decays exponentially within the stop band
with respect to the distance [1]. After the invention of the laser,
there has been much interest in propagating nonlinear pulses
through the periodic medium such as a fiber Bragg grating
(FBG), which is a periodic variation of the refractive index of
the fiber core along the length of the fiber. In the FBG, we also
have the stop band known as a photonic bandgap (PBG) that
does not allow the propagation of light pulses when the Bragg
condition is satisfied. The studies on FBGs have attracted
great attention for many years [2]–[18]. The pulse propagation
through the FBG is described by the nonlinear-coupled mode
(NLCM) equations which are nonintegrable in general. There-
fore, the analytical solutions of the NLCM equations are not
solitons but solitary waves that can propagate through FBG
without changing their shape. Gap solitons are obtained from
the NLCM equations and their spectra lie within the photonic
bandgap structure. There is another class of solitons called
Bragg solitons whose frequencies fall close to, but outside, the
band edge of the photonic bandgap. These are obtained from
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the approximated nonlinear Schrödinger (NLS) equation that
results from reducing the NLCM equations using the multiple
scale analysis. Generally speaking, the gap solitons are the
special class of Bragg solitons. For the first time, Chen and
Mills [2] have analyzed the properties of these gap solitons in
nonlinear periodic structure. Thereafter, Sipe and Winful [3],
Christodoulides and Joseph [4], Aceves and Wabnitz [5], and
Winful et al. [6] have obtained the analytical solutions for the
Bragg solitons. These solitons in FBGs have been extensively
reviewed in [7]–[9].

Recently conducted experiments have provided strong evi-
dence for the existence of both theoretically predicted gap soli-
tons and Bragg solitons in FBGs. For the first time, Eggleton
et al. [10], [11] examined nonlinear pulse propagation through
Bragg gratings at frequencies outside the bandgap (where the
grating is transmissive but highly dispersive) and succesfully
demonstrated the propagation of Bragg solitons. Taverneret al.
[12], [13] reported the first observation of gap soliton generation
in a Bragg grating at frequencies within the photonic bandgap.

The researchers recently have realized the potential appli-
cations of these solitons in periodic structures for all-optical
switching [14], pulse compression [15], [16], limiting [17], [18],
and logic operations [14], [18].

So far, we have discussed the pulse propagation in a one-di-
mensional (1-D) periodic medium, which consists of positive
(or negative) Kerr coefficients only. Recently, Pelinovskyet al.
[17] have used alternating layers with Kerr coefficients of oppo-
site signs, i.e., both positive and negative Kerr coefficients along
the pulse propagation direction in optical gratings. However,
this structure possesses high local nonlinearity inside each indi-
vidual layer. The method of compensating with the Kerr nonlin-
earities is termed as nonlinearity management of the refractive
optical gratings. Nowadays, nonlinearity management is widely
employed in the fabrication of structures based on second-har-
monic generation to achieve quasi-phase matching (QPM) of
the nonlinear interactions [19].

In this paper, we aim to investigate both bright and dark Bragg
solitons in such a 1-D periodic structure consisting of alternating
layers of nonlinear materials with opposite Kerr coefficients.
Therefore, we reduce the NLCM equations into a well-known
PNLS equation that describes the nonlinear pulse propagation
at the edges of the PBG structure. The solitons existing near the
PBG edge are called Bragg solitons. Now we wish to investigate
these solitons by solving the PNLS equation through a coupled
amplitude-phase method. The rest of the paper is arranged as
follows. In Section II, we present the theoretical background of
NLCM equations. In Section III, we use the multiple scale anal-
ysis to reduce the NLCM equations into a PNLS equation. In

0018-9197/03$17.00 © 2003 IEEE



SENTHILNATHAN et al.: BRIGHT AND DARK BRAGG SOLITONS IN A FIBER BRAGG GRATING 1493

Section IV, we solve the PNLS equation using a coupled ampli-
tude-phase method, and this ultimately shows the existence of
bright and dark Bragg solitons.

II. THEORETICAL MODEL

The nonlinear pulse propagation in a periodic nonlinear struc-
ture consisting of alternating layers with different linear re-
fractive indices and different Kerr nonlinearities is governed by
the NLCM equations of the form [17]

(1)

where and are the slowly varying amplitudes of forward
and backward propagating waves. The term is the
variance of the linear refractive index or strength of the linear
grating, is the average Kerr nonlinearity across the
structure and is the variance of the Kerr nonlinearity
between the layers. Pelinovskyet al. [17] and Brzozowskiet
al. [18] extensively investigated the above equations in order to
study the all-optical limiting in the nonlinear periodic structures.

Before embarking into the discussion of NLCM equations,
first we briefly discuss the pulse propagation in the linear regime
wherein the nonlinear effects and become zero. Now, we
discuss the dispersion relation associated with the linear cou-
pled mode (LCM) equations as follows. In the linear case, the
solutions to the LCM equations are given by

(2)

where and satisfy the following dispersion relation
. In this relation, when we impose the condition ,

we get . Under this condition, the linear problem has
the solution of the form

(3)

It is seen that the above solution satisfies the relation

Here represents the operator and is given by

When we introduce the nonlinearity into the system, linear cou-
pled-mode equations change to nonlinear coupled-mode equa-
tions. The construction of bright and dark soliton solutions in
the upper and lower branches of the dispersion curve follows
from the multiple scale analysis, which is discussed below.

III. M ULTIPLE SCALE ANALYSIS

In FBGs, so far, mainly two theoretical approaches have been
developed to describe the nonlinear pulse propagation. The first

one is based on the NLCM equations that describe a coupling
between forward and backward traveling modes. It is the usual
practice to describe the pulse propagation through a periodic
medium using NLCM equations when the refractive-index mod-
ulation is weak, i.e., . In general, these NLCM equa-
tions are nonintegrable and are applicable anywhere in the PBG
structure. However, in a few cases, NLCM equations have an-
alytical solutions representing the solitary wave solutions. The
most general form of the solitary wave solutions to the NLCM
equations, for the first time, were derived by the Aceves and
Wabnitz [5] and the details follow. The solutions of Aceveset
al. to the NLCM equations (with “” being zero) are given by

where the parameter are

(4)

with

In (4), is the Lorentz factor. Since the expressions forand
are well known [5], we do not present them here. Here, the

soliton-like solutions for the NLCM equations are considered
to be a generalization of the Massive Thirring model (MTM).
As a special case, when , the most general solutions
of Aceves and Wabnitz lead to the slow Bragg solitons, already
predicted by Christodulides and Joseph [4].

The second one is based on the NLS equation (Bloch wave
analysis). This approach is more general when compared to the
first one because the NLCM equations are reduced to an NLS
equation under the low intensity limit. That is, when the peak
intensity of the pulse is small enough that the nonlinear index
change is much smaller than the maximum value of, i.e,

. Usually the technique known as multiple scale anal-
ysis is adopted to deduce the NLS equation from the NLCM
equations [3], [7]. Very recently, under the low intensity limit,
Aceves [20] derived a perturbed two-dimensional (2-D) NLS
equation to describe the gap soliton bullets in the Kerr-type
planar waveguides. Therefore, in this paper, to describe the pulse
propagation in FBGs with deep index modulation, we also adopt
the multiple scale analysis [7], [20], a technique already fol-
lowed by Aceves [20] to reduce the NLCM equations into the
NLS-type equation. This would also mean that the center fre-
quency of the pulse is being tuned out of the photonic bandgap
structure. Now the pulse propagation in FBGs is governed by
the NLS equation, which in turn can be easily integrable by the
standard Inverse Scattering Transform (IST).

First we find the solution of the above equation in the linear
case and then introduce the nonlinearity into the coupled mode
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equations. In order to introduce the multiple scale analysis, we
extend the linear solution to the following form:

(5)

where , , , and . Now,
we proceed to solve for for successive orders in.
Balancing the terms gives

(6)

The solution of the above equation is found to be

(7)

Next, we turn to compute the higher order corrections to
. Balancing the terms gives

(8)

In order to solve the above equation, the secular terms should
be equated to zero and therefore

(9)

The above equation represents the well-known NLS equation,
which is used to describe the picosecond pulse propagation in
the fiber. In FBGs, (9), represents the pulse propagation outside
the PBG structure. In (9), the variable “” represents the ampli-
tude of the envelope associated with the Bloch wave formed by a
superposition of and . For the first time, Sipe and Winful
[3] derived this kind of NLS-type equation from the NLCM
equations. Sterke and Sipe [21] derived the NLS equation based
on the envelope function approach and also presented the soliton
solution outside the PBG but within FBG. Without deriving the
NLS equation from NLCM equations, Feng and Kneubuhl [22]
investigated the formation of new types of solitary wave solu-
tions called gap solitary wave solutions (bright and dark) in the
periodic structure. Recently, Iizuka and Wadati [23] used the re-
ductive perturbation method (RPM) and derived a similar type
of NLS equation in FBGs. They obtained explicit forms of both
bright and dark analytical soliton solutions in FBG which are
presented as follows:

(10)

(11)

where . The factors , , , and are
constants. The constant and are given by

Equations (10) and (11) represent the solutions for the bright and
dark Bragg solitons. These solitons were simply referred to as
grating solitonsby Iizuka and Wadati [23]. Further, they showed
that these grating solitons become gap solitons when the group
velocity becomes zero. Thus, (9) has been extensively investi-
gated by many authors. Aceves [20], in his recent work, consid-
ered higher order effects in FBGs and hence derived a perturbed
NLS equation to describe gap soliton bullets in planar waveg-
uides. In the present paper, we also consider higher order effects
in FBG and derive the perturbed NLS equation. Then, we solve
for it by studying the formation of bright and dark Bragg soli-
tons in both upper and lower branches of the dispersion curve in
an FBG. In order to see the impact of higher order effects, we
continue to balance terms, and this gives rise to

(12)

From (7), we have

(13)

Therefore, the equation for can be written as

(14)

Equation (14) represents the perturbation terms that must be
added to the NLS equation when we consider the higher order
effects in the FBG structure. With this result, the NLS equation
changes into PNLS equation, which is presented as follows:

(15)

The above PNLS equation represents the nonlinear pulse
propagation in a periodic medium with higher order effects
outside the PBG structure in an FBG. Here, it should be noted
that, for the first time, Aceves derived this kind of PNLS
equation in his recent work [20]. As we discussed in the
introduction, we are interested in analyzing Bragg solitons with
higher order effects in a periodic medium. Here, we investigate
Bragg solitons at both upper and lower branches of the PBG.
It also physically means that we consider both positive (upper
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branch) and negative (lower branch) Kerr nonlinearities in our
investigation and correspondingly they give rise to both bright
and dark Bragg solitons.

IV. BRIGHT AND DARK BRAGG SOLITONS

As stated above, in this section, we will construct both bright
and dark Bragg solitons for the PNLS equation that describes
the nonlinear pulse propagation with higher order effects in the
periodic medium. Using the coupled amplitude-phase method,
we solve the PNLS equation and obtain both bright and dark
Bragg solitons. For this purpose, we rewrite (15) in the form

(16)

The coefficients and represent, namely, second- and third-
order dispersions. The last term in the above equation accounts
for self-steepening which results from including the first deriva-
tive of the slowly varying part of the nonlinear polarization.

Now we will solve (16) by the coupled amplitude- phase
method, which was introduced in [24]. To start with, we con-
sider the solution of the form

(17)

where the function is a real one. The unknown parameters
and are directly related to the shifts in the wavenumber and
frequency, respectively, while the factor is the group velocity
of the wave. Substituting (17) into (16) and removing the expo-
nential term, we obtain

Now, separating the real and imaginary parts, we have

(18)

(19)

Since (18) possesses only third- and first-order derivatives, it
can be written in the following form:

Integrating this, we obtain

(20)

Writing (19) in the following form

(21)

it is clear that (20) and (21) can be equivalent only under the
following conditions:

From the above relations, we findand as

(22)

Equation (20) can also be written as

where is an arbitrary constant of integration. Further, it can
be written as

(23)

From the above equation, it is possible to get the different
analytical solutions for different values of the constant of in-
tegration . Among these solutions, we focus our attention on
the solutions of bright and dark Bragg solitons. Now, we discuss
how the bright soliton is formed outside the PBG but inside the
FBG. Thereafter, we apply the same condition to the physical
parameters in (23) and finally we obtain the bright soliton so-
lution analytically. To discuss the bright soliton formation, we
choose the positive nonlinearity and hence we have the self-fo-
cusing effect in an FBG structure. Because of the self-focusing
effect, the central frequency of the carrier wave is tuned close
to but outside the photonic bandgap of the periodic structure.
It physically means that the central frequency is moved to the
upper branch of the dispersion curve, where the grating-induced
group velocity dispersion (GVD) is anomalous. This anomalous
GVD exactly gets balanced with the nonlinearity (self-focusing
effect) and, as a result, we have the bright soliton formation out-
side the PBG but inside the periodic (FBG) structure, which is
termed abright Bragg soliton. As we consider positive nonlin-
earity in the formation of a bright soliton, we choose the cubic
nonlinear term as positive and in the above equation, and
obtain the following bright soliton solution:

Now, substituting the bright soliton envelope in (17), we obtain

(24)



1496 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 39, NO. 11, NOVEMBER 2003

In the above case, the envelope satisfies the bright soliton
whose carrier frequencies lie close to but outside the band edge
of the PBG and hence we call it a bright Bragg soliton. It should
be noted that the existence of solitary waves in the upper branch
of the dispersion curve has already been experimentally demon-
strated [10].

From the experimental point of view, it is necessary to know
the magnitude of the peak power to excite the bright Bragg
soliton. Similarly, the soliton period turns out to be another
important physical parameter that is involved in the formation
of a Bragg soliton. Based on [25], from the bright Bragg soliton
solution, we calculate the important and interesting physical pa-
rameters such as soliton power and pulse width in the form

(25)

(26)

With the known values of the parameters, , , and in an
FBG, we can calculate using (22). After calculating the value
of from (22), for a given , we can easily calculate the value
of from (25). By computing all the values of parameters of
(26), we can calculate the power required for generating the
bright Bragg soliton.

Similarly, there is another interesting class of solitons called
dark solitons and now we discuss the formation of the same in
the FBG. Instead of positive nonlinearity, we consider the neg-
ative nonlinearity, which gives rise to the self-defocusing effect
in the FBG. This self-defocusing effect shifts the central fre-
quency of the carrier wave to the lower branch of the dispersion
curve where we have normal GVD. This normal GVD exactly
gets balanced with the negative nonlinearity (self-defocusing ef-
fect) and, as a result, we get the dark soliton formation outside
the PBG but inside the FBG structure. This soliton is referred
to as adark Braggsoliton. For analytical purposes, considering
the negative nonlinearity, the constant in (23) is chosen in such
a way that the value of the expression inside the square root is
a perfect square and hence we obtain the dark solitary wave so-
lution as follows:

On substituting the dark soliton envelope in (17), we have

(27)

As stated above, here also the field satisfies the dark soliton
solution and their carrier frequencies are close to the band edge,
and hence we call the above solution the dark Bragg soliton
solution. The main results of this paper are similar to those of
Iizuka and Wadati [23].

As has been discussed in the bright soliton case, it is also
possible to calculate the power and pulse width for the dark
Bragg soliton case and the same is given as follows:

(28)

(29)

As discussed in the bright soliton case, by knowing all the pa-
rameter values, one can calculate the power required to generate
dark Bragg soliton.

V. CONCLUSION

We have considered the pulse propagation in a 1-D periodic
medium that consists of alternating Kerr coefficients with deep
index modulation, and hence the governing NLCM equations
were reduced to PNLS equation using the multiple scale
analysis. The PNLS equation that incorporates both the higher
order dispersive effects and self-steepening effects has been
derived using the multiple scale analysis. From the PNLS
equation, bright and dark Bragg solitary wave solutions have
been constructed by a coupled-phase amplitude method. We
have also calculated the important and interesting physical
parameters such as power and pulse width for both bright and
dark Bragg solitons. By knowing all the physical parameters,
one can calculate the minimum power required to generate the
solitons in the FBG structure.
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