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We construct two families of exact periodic solutions to the standard model of fiber Bragg grating (FBG)
with Kerr nonlinearity. The solutions are named “sn” and “cn” waves, according to the elliptic functions used
in their analytical representation. The sn wave exists only inside the FBG’s spectral bandgap, while waves of
the cn type may only exist at negative frequencies (w<0), both inside and outside the bandgap. In the
long-wave limit, the sn and cn families recover, respectively, the ordinary gap solitons, and (unstable) antidark
and dark solitons. Stability of the periodic solutions is checked by direct numerical simulations and, in the case
of the sn family, also through the calculation of instability growth rates for small perturbations. Although,
rigorously speaking, all periodic solutions are unstable, a subfamily of practically stable sn waves, with a
sufficiently large spatial period and w>0, is identified. However, the sn waves with w<<0, as well as all cn

solutions, are strongly unstable.
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I. INTRODUCTION

Periodically structured optical media have been in the fo-
cus of research activity for many years, due to their versatile
technological applications in the fields of telecommunica-
tions and sensor systems [1], and also as a subject of funda-
mental studies [2]. At the early stage of the work in this area,
the pioneering contribution by Winful, Marburger, and
Garmire [3] laid the groundwork for extensive theoretical
activities exploring nonlinear pulse propagation in one-
dimensional periodic structures known as fiber Bragg grat-
ings (FBGs). These structures are based on the periodic
modulation of the local refractive index in the axial direc-
tion. A characteristic feature of FBGs is a stopband, alias
photonic bandgap, in their linear-propagation spectrum. The
bandgap is induced by the resonant coupling between the
forward- and backward-propagating waves due to the Bragg
resonance.

The role of the Kerr nonlinearity in the light transmission
through FBGs was first considered in Ref. [3], where the
optical bistability in nonlinear FBGs was predicted, and ana-
lytical expressions were derived for the transmissivity, in
terms of elliptic functions. Similar solutions have found
other applications to optics, such as the bistability of nonlin-
ear optical waves in cholesteric liquid crystals [4], waves
generated by the four-wave mixing [5], and nonlinear states
in FBGs produced by the bidirectional illumination [6]. The
possibility of the optical-pulse compression and soliton
propagation in FBGs with the carrier frequency set outside
the photonic bandgap were highlighted too [7]. Then, stand-
ing solitary waves, i.e., immobile optical solitons in FBGs,
whose carrier frequency lies within the bandgap [hence the
name of gap solitons (GSs) is often applied to these localized
states], had been predicted in Refs. [8—10]. These works
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demonstrated that the local phase in the gap-soliton solutions
satisfies the stationary double sine-Gordon equation, which
admits well-known kink and antikink solutions. The ampli-
tude of the electromagnetic field in the resulting solution is a
localized function, with a more complex structure than the
simple hyperbolic secant commonly known in terms of
nonlinear-Schrédinger solitons. A general family of analyti-
cal soliton solutions of the standard FBG model, including
both standing and moving pulses, was reported in Refs. [11]
and [12]. In the latter work, the solitons were found using the
similarity of the equations to the massive Thirring model,
known in field theory. The family of the FBG solitons fea-
tures two nontrivial parameters, that account for the ampli-
tude (or frequency) and velocity of the solitons (it is inter-
esting to mention that a part of this family, namely, the
solitons with an arbitrary velocity and zero intrinsic fre-
quency, were found in an earlier work [8]).

Experimentally, FBG solitons were created in a short
piece of a fiber, less than 10 cm long [13]. Originally, the
solitons were quite fast, featuring the velocity no smaller
than half the speed of light in the fiber. However, using the
possibility to slow down the solitons in an apodized FBG
(that with the local Bragg reflectivity increasing along the
propagation length), much slower solitons (with the velocity
equal 1/6 of the light speed, which is not a limit) have been
demonstrated recently [14]. Before that, the apodization was
used to facilitate coupling of soliton-forming light pulses
into the FBG [13].

Unlike the abovementioned integrable Thirring model, the
coupled-mode equations (CMEs) which constitute the FBG
model, are not integrable; in that sense, the abovementioned
solutions are not true solitons, but rather “solitary waves,” in
terms of the rigorous mathematical classification. In particu-
lar, the lack of integrability of the CMEs is manifested by
simulations of collisions between moving solitons: the colli-
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sions are inelastic, and may lead to fusion of colliding pulses
into a single one [15]. Nevertheless, in addition to the two-
parameter soliton family, the FBG-CME system may admit
other physically relevant exact solutions. The objective of
the present work is to report analytical periodic-wave solu-
tions, and, which is crucially important to the physical appli-
cations, to examine their stability by means of both the rig-
orous analysis of linearized equations for small
perturbations, and in direct simulations. We find two families
of the solutions, one of them similar to but distinct from the
original solutions reported in Ref. [3]. Note that the stability
of the periodic solutions was not systematically explored be-
fore (modulational instability of uniform states was simu-
lated in Ref. [16], and studied in detail in Ref. [17]; instabil-
ity of periodic solutions in a model with a delayed nonlinear
response was demonstrated in Ref. [18]). We conclude that,
strictly speaking, all the periodic solutions are unstable, but
some of them may feature an extremely weak instability, thus
suggesting a possibility to create new virtually stable nonlin-
ear patterns in the experiment.

The paper is organized as follows. In Sec. I, we introduce
the standard CME system for the FBG, and give two families
of exact periodic solutions expressed in terms of Jacobi’s
elliptic functions sn and cn. The long-wave limit for these
periodic waves is considered too (the sn solutions degenerate
into the GS, while the cn waves take the limit form of an
antidark or dark soliton) In Sec. III, the stability of the peri-
odic waves is investigated by means of linearized equations
for small perturbations, and in direct simulations. The paper
is concluded by Sec. IV (where, in particular, we mention
applications of the obtained solutions in other areas).

II. PERIODIC SOLUTIONS TO THE COUPLED-MODE
EQUATIONS

The standard model of the Kerr-nonlinear optical fiber
with the Bragg grating written in its cladding is based on the
system of CMEs for amplitudes of counterpropagating waves
U(x,) and V(x,7), which are coupled linearly by the Bragg
reflection, and nonlinearly by the cross-phase modulation
(XPM), and also take into regard the self-phase modulation
(SPM) effect [19]. In the scaled form, the equations are

N Lo e -
iU, +iU, + 2|U| +|V[*|U+kV=0,

1
iV,—iVX+(5|V|2+|U|2>V+ kU=0, (1)

where x and ¢ are the coordinate along the fiber and time, and
« the Bragg reflectivity (which may be defined to be posi-
tive), while the group velocity of light and the overall Kerr
coefficient are scaled to be 1. In fact, one may additionally
normalize Egs. (1) so as to set k= 1; nevertheless, we prefer
to keep this coefficient in the equations, as the results may
then be easily generalized to the case of the abovementioned
apodization, by replacing constant x with a slowly varying
function «(x). In the latter case, exact solutions pertaining to
k=const may be used as a basis for a perturbative treatment
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[20]. In physical units, the Bragg-reflection length, which is
estimated as ~ 1/ in terms of Egs. (1), usually takes values
=1 mm, and the corresponding scaled time unit r=1 corre-
sponds to =10 ps [1].

As said above, a two-parameter family of soliton solu-
tions to Egs. (1) is available in an exact form [8—12]. The
stability of the solitons was first studied by means of the
variational approximation [21], and then with the help of
accurate numerical methods [22]. It was found that, approxi-
mately, half of the GSs are stable, and the other half unstable
(the solitons with positive and negative intrinsic frequencies,
respectively); the position of the stability border very weakly
depends on the soliton’s velocity, ¢ [22] (in the present no-
tation, the velocity takes values |c|<1). Recently, the analy-
sis was extended to GSs in a model with saturable (rather
than cubic) nonlinearity [23].

A general stationary-wave solution to Egs. (1) is looked
for as

U(x,t) = u(x)exp(—iowr), V(x,t) =v(x)exp(-iwr), (2)

with frequency w. Equations produced by the substitution of
these expressions in Egs. (1) admit the well-known reduction
v(x)=—u*(x). Then, complex function u(x) is sought for in
the Madelung form

u(x) = R(x)exp[iV(x)/4] (3)

(factor 1/4 in front of phase W is introduced to simplify
subsequent expressions). It is easy to check that the ampli-
tude may be eliminated in favor of the phase

R(x) =V(1/6)[ V' — 4w+ 4k cos(V/2)] 4)

(P’ =dW¥/dx), and the phase obeys the stationary version of
the double sine-Gordon equation

V" = 8kw sin(V/2) — 4k sin V. (5)

A. Periodic waves of the “sn” type

Equation (5) is integrable in terms of the Jacobi’s elliptic
functions. One family of such exact periodic solutions can be
found in the form of

\Erk sn(rx)

W(x)=4 tan”! .
Vdkw+4K> = (1 + k)

(6)

where k, taking values 0 <<k <1, is the modulus of the ellip-
tic sine (sn), r is an arbitrary real constant, and the corre-
sponding frequency is

w=* @) \[4k - (1L + )P - 42, (7)

Thus, solution family (6) contains two independent param-
eters k and r, which determine w as per Eq. (7). The condi-
tion that the expressions under the square roots in Egs. (6)
and (7) must be positive imposes the following restrictions
on the parameters

4k* > (1 + k)2, (8)

i.e., the sn-type solutions exist provided that the Bragg re-
flectivity is not too small. Although similar periodic solutions
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FIG. 1. Examples of periodic-wave solutions of the sn type.
Cases w=0.1, k=0.8, k=1, and r=1.055 (a), (b), and w=0.1, k
=0.1, k=1, and r=1.792 (c) represent long- and short-period
waves, respectively. In (a) and (c), real and imaginary parts of sta-
tionary field u(x) are shown within one period. In (b), amplitude
R(x) and phase ®=V¥(x)/4 are additionally shown for the long-
wave solution.

have been reported earlier [3,8,24], the present formulas of-
fer certain advantages, as described below.

For the subsequent analysis, it is convenient to use « and
o as free parameters, therefore we invert Eq. (7) to express
r? in terms of k and w. Solving the resulting quadratic equa-
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FIG. 2. An example of the periodic-wave solution of the cn
type. Panels (a) and (b) have the same meaning as in Fig. 1. Param-
eters are w=-0.5, k=0.995, k=0.2, and r=0.4919.

tion for 72, one can check that only one root complies with
condition (8),

, [(wk)?=1 (1+k%)?

: (1=K T (1- )

4k2(1 +K2) 0
(1-0) ©)
It immediately follows from Eq. (9) that condition r>>0
implies that the frequency may only take values from inter-
val w?><k?, ie., as might be expected, the solutions may
exist only inside the bandgap —x < w< k. Typical examples
of the sn-type stationary periodic solutions, as given by Eq.
(6), are displayed in Fig. 1, for large [(a),(b)] and small (c)
values of elliptic modulus &, which represent the long- and
short-period waves, respectively.

B. Periodic waves of the “cn” type

Another family of exact solution to Eq. (5) can be found
in the form

V2rk en(rx)

V=4 tan™!
V(L = 2k%) — 442 — dkw

, (10)

026602-3



CHOW et al.

w=—4x)"N[P(1 =2 - 4P + 47421 - k2. (11)

To ensure that the solution is real, only the negative sign in
front of the square root in Eq. (11) must be taken, i.e., the
cn-type solution, unlike its sn counterpart, given by Egs. (6)
and (7), exists only at negative frequencies. On the other
hand, the presence of the radicals in Egs. (10) and (11) does
not impose any additional constraint on the existence range
for this solution. Further, examination of expression (11) re-
veals that |w| may exceed «, i.e., the cn family is not re-
stricted to the (lower half of) the gap. In particular, the cn-
wave solution is located outside the gap, provided that

r? > 8k*(1 - 2k%). (12)

Precisely at the edge of the gap, i.e., for r’=8x*(1-2k?)
(which is tantamount to w=-«), Eq. (10) yields
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\Ek cn(rx)} ' (13)

V=4 tan™! —_—
@ [ V1 -2k2
It is interesting to note that all cn-type solutions with
k*>1/2 reside out of the gap, as seen from Eq. (12). A
typical example of the cn-type stationary solution (with the
frequency lying outside of the gap, although close to its
edge) is shown in Fig. 2.

C. Long-wave limits of the sn and cn waves

The long-wave limit k— 1 in the above solutions is of
special interest, as it corresponds to states with the infinite
period, among which GSs should appear. Indeed, Egs. (6)
and (9) with k=1 yield r=V«*>- o’ and

) 2 [ 2 2
VK — w” tanh(V k™ — w°x
\I’:4tan‘{ ( )]- (14)
K+
The substitution of this expression in Egs. (4) and (3) readily
recovers the ordinary GS solution

2Kk cos(6/2)cosh(Vk? — w’x) + i sin(0/2)sinh(V &> — w*x)
u=2 ?sm 0 , (15)

cosh(2 Vi — w’x) + cos(6)

with 6 related to w and « by cos O=w/ k, sin = VKE— w?/ k.
For k sufficiently close to 1, the periodic sn wave may be
regarded as a chain of solitons, as suggested, for instance, by
the plot of R*(x) in Fig. 1(b).

The long-wave limit for the cn-type solutions corre-
sponds, as follows from Eq. (11), to w=—(4k)~'(r?+4«%) (in
accordance with what was said above, this value lies outside
of the spectral gap). To derive a relevant limit form of solu-
tion (10) corresponding to k— 1, we first shift the coordinate,
by defining x=x" = K(k) (K is the complete elliptic integral
of the first kind) while keeping k # 1, and then make use of
relation cn[z ¥ K(k)]= = V1-k%sn(z)/dn(z). Then, the limit
form of solution (10) reduces to phase kinks

4 2
= i4tan‘1{\/1+—’;sinh(rx')], (16)
r

which connect values W= =27 at x’= £ . As follows from
Eq. (4), the amplitude profiles corresponding to kinks (16)
with the upper and lower signs represent, respectively, anti-
dark and dark solito&. In either case, the background field at
x'==*is R,=r/ {6k, and the local amplitude at the central
point x'=0 is Ry=(V4k>+r>+ 2k)/6k. Obviously, this
yields Ry>R,, for the antidark soliton and Ry<R., for its
dark counterpart. Solutions for the dark and antidark solitons
were found before [25], but they are unstable, because the
uniform background supporting both of them is subject to the
modulational instability [17].

The periodic waves of the cn type, with k close to 1, may
be understood as chains composed of periodically alternating

dark and antidark solitons. This interpretation is suggested,
in particular, by Fig. 2(b). Note that the dark and antidark
solitons always lie outside of the bandgap, because, as shown
above, all cn solutions with k>>1/2 reside at |w|> .

A remark on the relation between the present results and
earlier ones for periodic waves in FBG [3-6,8,24] is in order.
Previous presentations employed Stokes parameters to obtain
the solution in an implicit form, expressing the spatial coor-
dinate as an elliptic integral of the local intensity. In terms of
this approach, roots of a fourth-order polynomial, that deter-
mines the form of the elliptic integral, must first be deter-
mined (in fact, numerically, as analytical expressions for
them are extremely cumbersome) to relate the solution to
physical parameters, such as frequency w and reflectivity «.
The present calculations directly express the solutions in
terms of these parameters, and also give the phase of the
electric field in a straightforward manner, which was inac-
cessible in earlier formulations. Furthermore, the present cal-
culations readily reproduce the known bright, dark, and an-
tidark solitons [Egs. (14)—(16)], while the earlier
formulations might have difficulties with this. In fact, in the
long-wave limit (with the elliptic modulus of sn approaching
1), the abovementioned fourth-order polynomial, which de-
termines the previously known periodic solutions, exhibits
multiple roots, which gives rise to indefinite expressions or
constant solutions.

III. NUMERICAL RESULTS: UNSTABLE AND ALMOST
STABLE SOLUTIONS

As mentioned above, only half of the soliton family (15)
is stable, namely, the part with >0 (i.e., #</2), while
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the other half, with 77/2 < <, is unstable [strictly speak-
ing, the stability border is located at 6~ 1.01(7/2), rather
than exactly at #=/2 [22]]. Here, we aim to examine the
stability of the periodic solutions presented above, by com-
puting the corresponding eigenvalues of small perturbations,
and using direct simulations.

A. Linear stability analysis

Perturbed solutions of underlying Egs. (1) are looked for
as

U =[ug(x) + u;(x)e™Me™, V=[vy(x) + v, (x)e ™M]e ",

(17)

where u,(x) and v((x) are the stationary solutions, as defined
above, while u,(x) and v,(x) are eigenmodes of small pertur-
bations with respective instability growth rate —i\. The sub-
stitution of the perturbed solutions in Egs. (1) and the linear-
ization lead to the system of ordinary differential equations

d 1
<w+ ia)ul + (Jutol* + [wol*)uy + EMSUT

* *
+ u0(0001 + U()Ul) + KU =— )\Ml,

d 1
(‘U - l'E)Ul + (|140|2 + |U0|2)U1 + EU%UT +vg(uguy + uguy)

+ Kup=—A\vy. (18)

To obtain a closed system, we add to Egs. (18) their
complex-conjugate version, formally treating u; and uj, and
v, and v] as independent functions. Eigenvalues \, along
with the associated eigenfunctions u;(x) and v,(x), were
found from numerical solution of this linear system.

Examples of spectra of the numerically computed insta-
bility growth rate, which is defined as the maximum value of
Im(\) for a given solution of the sn type (for solutions of the
cn type, the instability is much stronger, because of the
abovementioned modulational instability of the segments
with the nearly constant amplitude, separating the dark and
antidark solitons, of which the cn wave is built, see Fig. 2),
are presented in Fig. 3. Results shown in this figure are in-
complete, as they were obtained from solutions of Egs. (18)
which have the same periodicity as the unperturbed sn wave.
Nevertheless, these partial results show a correct trend: as the
separation between individual solitons that build the chain
increases, i.e., k (the elliptic modulus) approaches 1, and the
period of solution (6), 4K(k)/r, grows as In[1/(1-k?)], the
entire pattern becomes more stable. This trend can be easily
understood, as the individual solitons are stable, if taken in
isolation, while the interaction between them, that may lead
to instability, is exponentially small if the separation between
them is large. Practically speaking, it is possible to identify a
particular value of 1-k, such as k=0.9 in Fig. 3(b), past
which the instability virtually disappears.

It may also be relevant to mention that these stability
results will be complete if applied to an FBG loop (rather
than a linear piece of the fiber), which imposes periodic
boundary conditions. Loop-shaped FBGs were considered, in
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FIG. 3. (Color online) The instability growth rate for two fami-
lies of the sn-type periodic solutions, at fixed values of w=0.3 (a)
and w=0.1 (b), as a function of elliptic modulus k. The results were
obtained from numerical solution of linearized Egs. (18), confined
to perturbations with the same period as the unperturbed solution.

particular, in Ref. [15], where multiple collisions between
moving solitons in the ring geometry were discussed. The
FBG loop may serve as a basis for the design of fiber lasers,
which could deserve special consideration. In physical units,
examples of the periodic solutions displayed in Figs. 1 and 2
correspond to the period on the order of few centimeters,
which may be a realistic size for the FBG loops (thus making
the potential ring-shaped FBG lasers quite compact).

B. Direct simulations

The above results demonstrate that the sn-type waves with
a sufficiently large period may be practically stable, which
suggests to test the stability of the waves in direct simula-
tions of Egs. (1). The simulations were performed by means
of the split-step Fourier method. As the sn-type waves are
expected to be essentially less unstable than their cn-type
counterparts, we will chiefly focus on solutions of the former
type; the cn waves will be briefly considered at the end of
this subsection.

Direct simulations corroborate the prediction of the linear-
stability analysis: the instability of the sn waves, with w
>0, quickly weakens as k approaches 1, making the period
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x (arb. units)

FIG. 4. Onset of a very weak instability of the periodic sn-type
wave. Here (as well as in Figs. 6 and 7 below), only the u compo-
nent is shown (by means of contour plots), as the respective picture
in the v component is very similar. Parameters of the unperturbed
solutions are k=0.99, w=0.8, k=0.85, and r=0.2887.

of the wave larger. A typical run of the simulations for a
long-period wave is displayed in Fig. 4, where small initial
perturbations develop into barely visible irregularities in the
periodic pattern only at =4 X 10* which corresponds to
~0.5 ws, in physical units (a long time, in terms of optics).

Collecting results produced by many runs of the simula-
tions, we have identified the time of the onset of the insta-
bility fingability @s @ function of the natural intrinsic parameter
of the solution family 1—k. The results are plotted at fixed
values of other parameters in Fig. 5. The plots corroborate
the expectation that the instability is strongly attenuated with
the increase of the period of the sn wave. The waves also
become more stable, for fixed k, as one approaches the edge
of the bandgap, increasing w toward w=«, see Fig. 5(a), or
decreasing k toward k=, see Fig. 5(b). The latter trend can
be easily understood: Eq. (9) shows that r vanishes in the
limit of w/x— 1, hence solution (6) becomes nearly linear
(its amplitude also vanishes ~r), while the instability of the
sn wave is a nonlinear effect.

As mentioned above, GSs in the standard FBG model are
unstable in the lower half of the bandgap, at <0, and the
periodic sn solutions share this property, as illustrated by an
example displayed in Fig. 6. Comparing it with Fig. 4, we
conclude that the sn waves with negative frequencies de-
velop the instability, roughly speaking, 100 times faster than
their robust counterparts with w>0. This difference can be
readily explained, as in the case of w <0 the individual soli-
tons, which build the sn pattern, are intrinsically unstable by
themselves.

Direct numerical simulations of the cn-wave solutions
were performed too (for w<<0, since they do not exist oth-
erwise, as shown above). A typical example, presented in
Fig. 7, demonstrates that the cn waves are still more unstable
than their sn counterparts with w<<O0.

IV. CONCLUSION

We have found two families of exact periodic solutions
for the standard FBG model, of the sn and cn types. The
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FIG. 5. The instability-onset time for sn-type waves versus
1 -k, with the fixed Bragg reflectivity k=1 at different frequencies
w (a) and with fixed w=0.9 at different « (b). Time #=10 000 cor-
responds, in physical units, to ~0.1 us.

presentation of the solutions is different from and more com-
pact than given in earlier works. In the long-wave limit, the
sn solutions (which exist only inside the spectral gap) go
over into the ordinary GS (gap soliton), while the cn solu-
tions take the form of previously known (unstable) out-of-
the-gap antidark and dark solitons. Stability of both classes
of the solutions was tested in direct simulations, and, for the
sn-type solutions, the instability growth rate was also found
from linearized equations for small perturbations. Strictly
speaking, all periodic solutions are unstable. However, for
the solutions of the sn type, with positive frequencies (w
>0) and a large spatial period, the instability is very weak,
and the analysis of the eigenvalues, along with results of
direct simulations, make it possible to identify a subclass of
the sn waves which are very robust (practically stable).
These robust periodic waves may be observed in the
experiment—either in the ordinary form of the transmission
function or, plausibly, as dynamical states in an FBG loop,
that may be a basis for the design of a ring-shaped fiber laser.
On the other hand, the sn solutions with w<<0 are strongly
unstable. As concerns periodic solutions of the cn type, they
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FIG. 6. The instability of the sn wave at a negative frequency:
w=-0.3, k=0.9, k=1, and r=1.004. Note that in this figure and in
Fig. 7, the actual time unit is nanosecond, unlike microsecond in
Fig. 4.

exist only at w<<0 and were found to be strongly unstable
too.

It is relevant to mention that the explicit solutions of the
double sine-Gordon equation reported in this paper may also
be applicable in other fields of physics, where this equation
is relevant. These potential applications include spin waves
in antiferromagnetic materials [26], Heisenberg spin chains
[27], and some models of hadron matter [28].
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