High impedance fault detection in power distribution
networks using time-frequency transform and
probabilistic neural network
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Abstract: An intelligent approach for high impedance fault (HIF) detection in power distribution
feeders using advanced signal-processing techniques such as time—time and time—frequency trans-
forms combined with neural network is presented. As the detection of HIFs is generally difficult by
the conventional over-current relays, both time and frequency information are required to be
extracted to detect and classify HIF from no fault (NF). In the proposed approach, S- and
TT-transforms are used to extract time—frequency and time—time distributions of the HIF and
NF signals, respectively. The features extracted using S- and TT-transforms are used to train
and test the probabilistic neural network (PNN) for an accurate classification of HIF from NF. A
qualitative comparison is made between the HIF classification results obtained from feed
forward neural network and PNN with same features as inputs. As the combined signal-processing
techniques and PNN take one cycle for HIF identification from the fault inception, the proposed
approach was found to be the most suitable for HIF classification in power distribution networks

with wide variations in operating conditions.

1 Introduction

Faults on power distribution feeders are difficult to detect
[1, 2] using the conventional over-current, ground fault
relays and some versions of distance relaying schemes.
Diversity, uncertainties, selectivity, suitability and oper-
ational constraints introduce malfunction, limitations and
detection errors in case of high impedance faults (HIFs).
This is notable when remote source loading, fault resistance
nonlinearity, capacitive line currents, mutual coupling and
back-feed effects are taken into consideration. HIF faults
[3, 4] are usually characterised by the ripple-rich current
harmonic content because of nonlinearity and are thus
abnormal events that frequently occur in distribution
feeders. There are two types of HIFs: the active faults and
the passive ones. Active faults are followed by an electric
arc and present currents below the threshold of the protec-
tion relays. Normally, these currents decay with time until
the complete extinction of the arc [5]. The majority of the
techniques used to detect active HIFs make use of signals
generated by the electric arc (harmonic and non-harmonic
components) [6—9]. However, the arc may vanish even
before the detection system gathers enough information to
confirm the fault. Passive faults do not present an electric
arc. They are more hazardous to people since there is no
indication of the energisation condition of the conductor.
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Because of the presence of low or no current in HIF, the
conventional over-current protection system normally fails
to detect the same. Thus, it is a challenging issue to detect
the HIF and isolate the feeder.

Sedighi et al. [10] presented a combined wavelet transform
and soft computing application to HIF classification. This
work includes feature extraction using wavelet transform
and then classification using soft computing methods. HIF
detection using neo-fuzzy systems [11] uses an artificial
neuron set, composed of ‘neo-fuzzy’ neurons, and is trained
to recognise the standard responses. In another work, earth
faults with high impedance earthing in electrical distribution
networks are characterised [12]. In the occurrence of disturb-
ances, the traces of phase currents, voltages, neutral currents
and voltages were recorded at two feeders at two substations.
The study dealt with the clearing of earth faults, relation
between short circuits and earth faults, arc extinction, arcing
fault characteristics, appearance of transients and magnitudes
of fault resistances. The above works find limitations as
wavelet transform is highly prone to noise and provides erro-
neous results even with an SNR of 30 dB [13]. Also the fuzzy
neural networks are sensitive to system frequency changes and
require large training sets and long training time.

In this paper, a hybrid pattern recognition technique using
either S- or TT-transform and probabilistic neural network
(PNN) is used to detect and classify HIF. The HIFs are
created under linear and nonlinear loading conditions of
the distribution network. HIFs are easily distinguished
from no fault (NF) under linear loading condition as
higher harmonic components are more pronounced in HIF
compared with NF under linear loading condition. But
HIF and NF current signals under nonlinear loading are
mostly similar in nature, and it is difficult to distinguish
HIF from NF under nonlinear loading condition as both
contain similar harmonic components.

In the first method, the current signals for fault and NF
conditions are processed through S-transform [14—19] to
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find out both time and frequency information with proper
time and frequency resolution, respectively. The frequency
information is extracted in better frequency resolution and
poor time resolution to obtain the accurate frequency infor-
mation, and the time information is extracted in better time
resolution and poor frequency resolution to obtain the accu-
rate time information. The features such as energy and stan-
dard deviation of the frequency and time information are
computed for half-cycle HIF current signal from the fault
inception and used to train and test the neural networks
[(PNN and feedforward neural network (FNN)] for the
classification of HIF from NF.

Similarly, in the second method, the TT-transform [20—
22] is used to extract the time—time distribution of the
respective signals. The current signals of the HIF and NF
are processed through TT-transform to generate TT-contour
and time index at a particular time. The features such as
energy and standard deviation of the TT-contour and time
index are found out and used to train and test the PNN and
FNN to provide accurate classification. The PNN and FNN
are tested with features for different loading conditions of
the distribution feeder as well as under different HIF con-
ditions on surfaces such as dry asphalt, wet asphalt, dry
cement, wet cement, dry soil, wet soil and so on.

2 System studied

The systems studied in the proposed research are: (a) three-
phase radial distribution feeder and (b) three-phase meshed
network. The schematic diagrams are given in Figs la and
1b, respectively. The generator is of 15 kV and 10 MV A
capacity and connected to the transformer with 15/25 kV
and 10 MV A capacity. The distribution network operates
at 25 kV voltage. The networks are simulated under linear
and nonlinear loads with different loading conditions. The
6-pulse rectifier is used to represent the nonlinear load.
The HIF model is developed using antiparallel diodes
with nonlinear resistance and DC source connected together
for each phase as shown in Fig. 1c. The simulation models
are developed using Power System Blokset (SIMULINK)
and the sampling rate chosen is 1.0 kHz. The typical HIF
fault current under linear and nonlinear loads is shown in
Figs. 2a and 2b, respectively. As seen from the figures,
the HIFs are created after two cycles of normal condition.
Thus, in case of HIF under linear loading condition
(Fig. 2a), the post-fault current signal (HIF) contains
higher harmonic components compared with the pre-fault
current signal (NF under linear loading). Thus, extracted
harmonic components can easily distinguish HIF from NF
under linear loading condition. But in case of HIF under
nonlinear loading condition (Fig. 2b), the post-fault
current (HIF) and the pre-fault current (NF under nonlinear
loading) contain higher harmonic components. Thus, it is
very difficult to distinguish HIF from NF under nonlinear
loading condition, which is a vital issue in case of power
distribution network.

3 Generalised S- and TT-transforms
3.1 Generalised S-transform

The S-transform [14] is an extension to the idea of the
Gabor transform and wavelet transform and is based on a
moving and scalable localising Gaussian window. The
S-transform falls within the broad range of multiresolution
spectral analysis, where the standard deviation is an
inverse function of the frequency, thus reducing the dimen-
sion of the transform. The localising Gaussian function g(¢)
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is defined as
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where o is the standard deviation. The multiresolution ST is
defined by

S(f, 7, o) = r h(t)g(t—t, o)e ™ dt )

This falls within the definition of the multiresolution
Fourier transform. The Gabor transform I'( f, 7) is a particu-
lar case of S (f, 7, o) with o held constant. The primary
purpose of the dilation (or scaling) parameter is to increase
the ‘width’ of the window function g(¢, o) for lower fre-
quency and vice versa and is controlled by selecting a
specific functional dependency of o with the frequency f.
We have chosen the width of the window to be proportional
to the period of the cosinusoid being localised

1
=T=
D=T=17

where T is the time period . The choice of unity for the con-
stant in (5) makes the Gaussian window in (1) the narrowest
in the time domain. The ST may be written as
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One can see here that the zero frequency of the S-transform
is identically equal to zero for this definition of o( f). This
adds no information. Therefore S( f,7) is defined as indepen-
dent of time and is equal to the average of the function (),
that is
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For the discrete S-transform, 4(¢) can be written in discrete
form as A[ pT], where p varies from 0 to N — 1 and is known

as discrete time series of the signal A(z). Discrete Fourier
transform of the time series A[pT] can be expressed as

H[ ]\?T] Z hpTle —(i27mk/N) (6)

where n =20, 1, ..., N — 1 and the inverse discrete Fourier

transform is
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The S-transform in discrete case is the projection of the
vector defined by the time series A[p7] onto a spanning
set of vectors. Since spanning vectors are not orthogonal
and the elements of S-matrix are not dependent, each
basis vector is divided into N localised vectors by an
element-by-element product with N shifted Gaussians,
such that sum of these N localised vectors is the original
basis vector. The S-transform of the discrete time series

H[pT] is given by
[ ,]T] ZH[m + n] -7 ml/nZ)el'Zﬂmj/N ®)
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Fig. 1 Schematic diagrams

a Three-phase radial distribution feeder (single-line diagram)
b Three-phase meshed network (single-line diagram)

¢ HIF model
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where j, mandn=20,1,..., N— 1
3.2 TT-transform

TT-transform [22] is a two-dimensional time—time
representation of a one-dimensional time series based
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on S-transform. TT-transform provides the time-local
view of the time series through the scaled windows.
It differs from the windowed time series of
S-transform that the degree of localisation of the
signal components is frequency-dependent rather than
frequency invariant. Compared with the S-transform,
the TT-transform provides better time-local properties
of the time series and thus helps in localising the
frequency components of the time series. The math-
ematical formulation of the TT-transform is given
below.
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Fig.2 Typical HIF fault currents

a HIF current under linear load for a-phase
b HIF current under nonlinear load for a-phase

The general expression for short-time Fourier transform
(STFT) is given by

STFI(t, f) = r h(myw(t — T)exp (— 2mifiydr  (10)

Also it can be expressed through convolution sum as

+STFT(t, f) = r H(a +1)W(a)
o (11)

exp (R miat)da

where W and H are Fourier transform of w and #,
respectively.

The inverse Fourier transform of the above equation
leads to

o0

[A(Dw(t — 7] = J STFT(t, /) exp (Rmifndf  (12)

—00

for all values of ‘¢’ the windowed function becomes a two-
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dimensional function and is expressed as

o0

STFTr = J STFT(¢, f)exp (+ 2mif 7)df (13)

The STFTrr is the time—time distribution. Similarly, another
time—time distribution can be obtained from the inverse
Fourier transform of S-transform and given as follows

TT(, 7) = S, f)exp (+ 2mif ) df (14)
where the S-transform (¢, f) is defined as
00 2 77_2 2
Swf)=| H(a+f)exp (f—f‘)
exp (2 miat) da (15)
The expression is generalised using an windowing factor 8
and
00 ) 202
St f) = J H(a+f)exp (%) exp ( + 2miat) da
(16)
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Fig. 3 Feature plots

a HIF signal, magnitude against sample (time) and magnitude against frequency (normalised) for HIF current signal of phase-a
b Comparisons in magnitude- sample (time) and magnitude—frequency (normalised) for HIF and NF signals, respectively

¢ Feature F1 against feature F4

d Feature F2 against feature F3

e Feature F2 against feature F4

If TT (¢, 7) is considered at all 7but a specific ¢, the result time-local function is different from the windowed func-
is a time-local function, conceptually similar to a windowed tions of the STFT. The scaling properties of S-transform
function such as that in (12). Since a different window has lead to higher amplitudes of high frequencies (as compared
been used to obtain S-transform at each value of ‘f°, this with low frequencies) around 7= .
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The discrete S-transform is found out by sampling (15) in
frequency and is given by

N/2-1
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Similarly, the discrete TT-transform is obtained from the
discrete form (14) of as

TT(T, kT) Nfls[ T, ]exp[2mnk:| (18)
) - j s N
m=N/2 NT N

4 Feature extraction using S- and TT-transforms
4.1 Feature extraction using S-transform

The time—frequency transform known as S-transform is
used to extract features from HIF and NF current signals
for different operating conditions of the power distribution
networks. The features are extracted for half cycle fault
current signal after fault inception. The HIF and NF
current signals are generated from the designed power dis-
tribution models and processed through S-transform. The
frequency and time information of the corresponding
current signals is extracted from the generated S-matrix
with proper frequency and time resolution.

The frequency information is extracted from the S-matrix as

a = max (abs(ST)) (19)

where a represents the maximum of the absolute value of the
transposed S-matrix generated from the S-transform which
provides the amplitude—frequency information.

Similarly, the time information is extracted from the
S-transform as

b = max (abs(S)) (20)

where b represents the maximum of the absolute value of
the S-matrix generated from the S-transform which provides
the amplitude—sample (time) information.

The energy and standard deviation of frequency and time
information are given as follows

Energy (frequency) = sum (az) 21)
s tan dard deviation (frequency) = std (a) (22)
Energy (time) = sum (b°) (23)
s tan dard deviation (time) = std (b) (24)

The frequency information is extracted with better fre-
quency resolution and poor time resolution. This provides
the information regarding the different frequency com-
ponents present in the HIF and NF current signals.
Similarly, the time information is extracted for both
signals with better time resolution and poor frequency res-
olution. Fig. 3a shows the magnitude against sample
(time) and magnitude against frequency (normalised) for
HIF current signal. Here the magnitude—time characteristic
is considered as time information and magnitude against
frequency characteristic is considered as frequency infor-
mation of the signal. Several numerical indices such as
energy and standard deviation of both frequency and time
information are computed to obtain the corresponding fea-
tures. The energy and standard deviation of the time infor-
mation are considered as features F1 and F2, respectively,
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and the energy and standard deviation of frequency infor-
mation are regarded as features F3 and F4, respectively.
Fig. 3b shows the difference in magnitude—sample (time)
and magnitude—frequency (normalised) characteristics
between HIF and NF signals. While comparing the ampli-
tude—time and amplitude—frequency characteristics for
HIF and NF signals, variations are observed between the
two.

As seen from the feature plots shown in Figs. 3c—3e,
some of the features are distinct, whereas some are
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Fig. 4 TT-contour and time-index for HIF and NF signals

a Time index and TT-contour for HIF signal

b Comparison in TT-contour and time index for HIF and NF signals,
respectively

¢ Feature F5 against feature F7
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overlapping in nature. All the above plots are presented to
provide information regarding the ability of the extracted
features for classification in raw feature form so that the fea-
tures can be used as inputs to the designed PNN and FNN
for final classification between HIF and NF. Hence to clas-
sify the HIF and NF with nonlinear load from the above-
mentioned features, intelligent classification techniques
based on neural classifier are adopted.

4.2 Feature extraction from TT-transform

The features extracted from TT-transform are the energy
and standard deviation of the TT-contour and time index,
respectively, for half-cycle of the fault current after fault
inception. TT-contours provide the frequency localisation
of the time-series in time—time distribution as
TT-transform provides better time local properties of the
time series and thus helps in localising the frequency com-
ponents of the time series. Thus, frequency information can
be extracted from the TT-contour. Time index is the time
localisation of a time series at a particular time instant.
Fig. 4a shows the TT-contour and time index at a particular
time for HIF signal. TT-contour and time index for HIF and
NF signals are compared in Fig. 45. While comparing the
TT-contour and time index for HIF and NF signals, vari-
ations are observed in both cases. As seen in Fig. 4b, the
TT-contours for both cases appeared to be the same, but if
judged properly it can be observed that the TT-contours
are highly pronounced in HIF signal (first window,
Fig. 4b) when compared with that of the NF signal
(second window, Fig. 4b), which reflects the frequency
localisation of the time series in time—time distribution.
Several numerical indices such as energy and standard devi-
ation of both TT-contour and time index are computed to
obtain the corresponding features. Thus F5 and F6 are the
features for energy of the TT-contour and time index,
respectively. Similarly, F7 and F8 are the features for stan-
dard deviation for the TT-contour and time index, respect-
ively. Fig. 4c shows the relationship between feature F5
and F7 for HIF and NF. All the above plots are presented
to provide information regarding the ability of the extracted
features for classification in raw feature form so that the fea-
tures can be used as inputs to the designed PNN and FNN
for final classification between HIF and NF. It is observed
that the corresponding features are separable, but overlap-
ping to some extent. Thus these features are used to train
and test the FNN and PNN to classify the HIF from NF.

Hidden Layer

Output Layer

- /L _/

Radial Basis Layer Competitive Layer

Fig.5 Architecture of the proposed PNN
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Fig. 6 Classification rate of FNN with F1-F4

The following section deals with the designed PNN and
FNN for classification purposes.

5 Classification of HIF and NF using FNN
and PNN

5.1 FNN and computational results

FNNs are the most popular and most widely used models in
many practical applications. They are known by many
different names, such as ‘multilayer perceptrons’. The pro-
posed FNN has one hidden layer with inputs x;, x,, ... ,x,
(inputs), and outputs y; and y, (two outputs). The input
layer consists of features as the inputs to the network and
the hidden layer has five hidden neurons. Each neuron per-
forms a weighted summation of the inputs, which then
passes through a nonlinear activation function. FNN pro-
vides an output corresponding to HIF and NF classes,
respectively.

There are 500 that cases are simulated and used to train
and test the designed FNN. The FNN is trained and tested
with different combinations of inputs to test the impact on
classification rate. The classification rates are calculated
on the testing data sets. Figs. 6—8 show the HIF classifi-
cation rate of FNN wusing features from S- and
TT-transforms for both radial distribution and mesh net-
works. The y-axis of the figures shows the percentage HIF
classification, and x-axis shows the training and testing
ratio of data sets. FNN with F1—F4 (S-transform features)
provides up to 94.04% and 93.02% classification rate
(Fig. 6) for radial distribution network and mesh network,
respectively. Similarly, FNN with features F2 and F3 only
(S-transform features) provides up to 93.04% and 92.86%
classification rate (Fig. 7) for radial distribution and mesh
networks, respectively. FNN is trained and tested with fea-
tures from TT-transform provides maximum 94.16% and
93.55% classification rate (Fig. 8) for radial distribution
and mesh networks, respectively. It is found that FNN

| @ Radial Distribution Network O Mesh Network l
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93 4
92 4
91 4

90 4
89 _AE_‘
88 -
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Fig. 7 Classification rate of FNN with F2 and F3
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Table 1: Training and testing time of FNN for different data sets
Training, %  Testing, % FNN with F1-F4 FNN with F2 and F3 FNN with F5-F8
Training time, s  Testing time, s Training time, s Testing time, s Training time, s  Testing time, s

50 50 9.30 0.3 7.14 0.28 7.14 0.28

60 40 8.47 0.25 5.96 0.19 5.96 0.19

70 30 8.91 0.25 5.27 0.16 5.27 0.16

80 20 9.36 0.25 5.44 0.16 5.44 0.16

90 10 9.63 0.25 5.56 0.19 5.56 0.19

provides up to 94% classification rate for HIF identification
with variations in operating conditions of the power distri-
bution network. Table 1 depicts the training and testing
time of FNN for different training and testing data sets.

5.2 PNN and computational results

The PNN model is one among the supervised learning net-
works and has the following features different from those of
other networks in the learning processes.

e [t is implemented using the probabilistic model, such as
Bayesian classifiers.

e A PNN is guaranteed to converge to a Bayesian classifier
provided that it is given enough training data.

¢ No learning processes are required.

e No need to set the initial weights of the network.

e No relationship between learning and recalling
processes.

e The difference between the inference and the target
vectors is not used to modify the weights of the network.
The learning speed of the PNN model is very fast, making
it suitable for fault diagnosis and signal classification pro-
blems in real time. Fig. 5 shows the architecture of a PNN
model that is composed of the radial basis layer and the
competitive layer.

In the signal classification application, the training
examples are classified according to their distribution
values of probabilistic density function (PDF), which
is the basic principle of the PNN. A simple PDF is as
follows

x=xf

202

Z exp

SiX) = (25)

B Radial Distribution Network O Mesh Network

w
=

(=] w w
o oMPo®
= N W
b g

90.5 |
90 4
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Fig. 8 Classification rate of FNN with F5-F8
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Modifying the output vector H of the hidden layer in the

PNN is
— 3 X = W
H, = L 26
h CXp( 202 ( )
Z Wy Hyand N, = Z )
= max (net)theny; =1, elsey; =0 27

where i is the number of inputs, 4 the number of hidden
units, j the number of output (two in this case), k the
number of training examples, N the number of classifi-
cations (clusters), o the smoothing parameter (standard

deviation), X the input vector, H the Euclidean dis-

tance between the vectors X and Xj;, that is
2

HX Xy H = (X Xk]) , W-)fqh the connection weight

between the mput layer X and the hidden layer H and W,
the connection weight between the hidden layer H and the
output layer Y.

Figs. 9—11 provide the computational results from PNN.
There are 500 cases that are simulated and used to train and
test the designed PNN. The PNN is trained and tested with
different combinations of inputs to test the impact on classi-
fication rate. The classification rates are calculated on the
testing data sets. The maximum classification rate for
radial distribution and mesh networks are 98.02% and
97.89%, respectively (Fig. 9) with F1, F2, F3 and F4
(S-transform features). PNN with features F2 and F3 only
(S-transform features) provides classification rate up to
98.06% and 97.85% (Fig. 10) for radial distribution and
mesh networks, respectively. Similarly, PNN with features
from TT-transform provides classification rate up to
98.05% and 97.09% (Fig. 11) for radial distribution and
mesh networks, respectively. Table 2 depicts the training

3 Radial Distribution Network

O Mesh Network |

HIF Classification(%o)

(60,40) (70,30) (80,20)

(50.50)

(90,10)

Traning and testing ratio

Fig. 9 Classification rate of PNN with F1—F4
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Fig. 11 Classification rate of PNN with F5—F8

and testing time of PNN for different training and testing
data sets.

Fig. 12 shows the performance comparison between
RBFNN, support vector machine (SVM) and PNN for
same features as inputs. SVM with Gaussian kernel is
used for designing the classifier. SVM provides 94.82%
classification accuracy compared with 94.58% provided
by RBFNN with 90% training and 10% testing data sets.
As seen in Fig. 12, for other training and testing data sets,

[l RBFNN @ SVM O PNN |

e

(60,40) (70,30) (80,20) (90,10)

Training and testing ratio

100

ER8E8Y

HIF Classification(%)

88

Fig. 12 Performance comparison between RBFNN, SVM and
PNN with different training and testing data sets for radial distri-
bution network

@ S-Transfrom O Wavelet Trans form

HIF Classification (%)

PNN

RBFNN

SVM

Fig. 13  Performance comparison between RBFNN, SVM and
PNN with features from S-transform and wavelet-transform with
90% training and 10% testing data sets for radial distribution
network

the classification accuracy resulting from SVM is almost
the same compared with RBFNN. With same training and
testing data sets, PNN provides an HIF classification accu-
racy of 98.05%, which is substantially high compared with
SVM and RBFNN. Similar observations are made for
different training and testing data sets. It is also observed
that RBFNN suffers from slowness because of high training
and testing time compared with PNN, which is not desired
for fault diagnosis and signal classification problems in
real time. HIF classification accuracy is also observed
with features from wavelet transform. Db-4 is selected for
feature extraction from the HIF and NF signals. Features
such as energy and standard deviation of the detailed coeffi-
cients at level-1 (D-1) and level-2 (D-2) are extracted which
keep information regarding higher harmonic components.
The performance comparison for HIF classification rate
between S- and wavelet transforms is shown in Fig. 13. It
is found that the classification rate is substantially higher
with features from S-transform compared with the wavelet
transform. Also wavelet transform is highly prone to noise
and provides erroneous results in noisy environment [13],
whereas S-transform is highly immune to noise. Thus
the proposed technique is found to be highly effective for
classifying HIF from NF compared with the existing
techniques.

6 Discussion

In the proposed technique, a qualitative comparison is made
between PNN and FNN for HIF detection in power distri-
bution network. From the results obtained, it is found that
PNN provides better results compared with FNN with
same input features to the network. The classification rate
for radial distribution network is 98.02% from PNN com-
pared with 94.04% from FNN with features F1-F4.
Similarly, the classification rate is 97.89% from PNN

Table 2: Training and testing time of PNN for different data sets

Training, % Testing, % PNN with F-F4 PNN with F2 and F3 PNN with F5-F8
Training time, s  Testing time, s  Training time, s  Testing time, s  Training time, s  Testing time, s
50 50 0.72 0.01 0.45 0.01 0.45 0.01
60 40 0.72 0.01 0.45 0.01 0.45 0.01
70 30 0.75 0.01 0.44 0.01 0.44 0.01
80 20 0.69 0.01 0.47 0.01 0.47 0.01
90 10 0.70 0.01 0.45 0.01 0.45 0.01
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compared with 93.02% from FNN with same features from
S-transform for mesh networks. Similar observations are
made with features from TT-transform. PNN provides a
classification rate of 98.05% compared with 94.16% from
FNN with features from TT-transform. It is found that the
training and testing time for PNN is drastically reduced
compared with the training and testing time of FNN. As
seen from Table 1, the training and testing times are 9.30
and 0.3 s, respectively, from FNN compared with the train-
ing and testing time of 0.72 and 0.01 s, respectively, from
PNN as depicted in Table 2, with 50% training and 50%
testing data sets. Similar observations are made with other
features from TT-transform. As the PNN testing takes
0.01 s (half-cycle on 50 Hz cycle) and feature are extracted
for half cycle post-fault current signal, thus the combined S-
or TT-transform with PNN will take one cycle time for HIF
identification from the inception of fault.

7 Conclusions

Intelligent techniques for HIF detection and classification
are presented in the proposed study. An attempt is made
to classify the HIF from NF under nonlinear loading. In
this study, the time—frequency and time—time distributions
of the HIF and NF current signals are extracted using S- and
TT-transforms, respectively, and different features like
energy, standard deviation are computed and used to train
and test the PNN for HIF classification. As futures are
extracted for half cycle post-fault HIF signal and PNN
testing takes half-cycle time (0.01 s), thus the combined
approach takes one cycle for HIF classification from the
fault inception. Also HIF classification rate is more than
98%, obtained from PNN. Thus, the proposed approach is
fast and accurate for HIF identification and can be extended
for protection of large power distribution network.
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