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Abstract: A new approach for distance relaying of transmission line using machine intelligence
technique such as support vector machine (SVM) is presented. The proposed SVM technique is
used for faulty phase selection and ground detection in different fault situations that occur on
large power transmission line. Post-fault current and voltage samples for one-fourth cycle (five
samples) are used as inputs to SVM 1, which provide output for faulty phase selection. SVM 2
is trained and tested with zero-sequence components of fundamental, third and fifth harmonic
components of the post-fault current signal to provides the involvement of ground in the fault
process. The polynomial and Gaussian kernel SVMs are designed to provide the most optimised
boundary for classification. The total time taken for faulty phase selection and ground detection is
10 ms (half cycle) from the inception of fault. Also the proposed technique is tested on experimental
set-up with different fault situations. The test results are compared with those of the radial basis func-
tion neural network and were found to be superior with respect to efficiency and speed. The classi-
fication test results from SVMs are accurate for simulation model and experimental set-up, and thus

provide fast and robust protection scheme for distance relaying in transmission line.

1 Introduction

Different types of transient phenomena occur on the power
transmission line. From these transient phenomena, faults
on transmission lines need to be detected, classified,
located accurately and cleared as fast as possible.
Distance relaying techniques based on measurement of
impedance at the fundamental frequency between the
fault location and the relaying point have received wide-
spread attention. The accuracy of the fault classification
and location also depends on amplitude of DC offset and
harmonics in comparison to the fundamental component.
Fourier transform, differential equation, waveform model-
ling, Kalman filters and wavelet transform are some of the
techniques used for fault detection and location calculation
[1-6]. Some of the recent papers in this area [3, 4, 6] have
used only the sampled current values at the relaying
point during faults to classify fault types and to calculate
distance. To obtain more satisfactory results, however,
wavelet filters having longer length and more levels of
wavelet decomposition must be employed. Consequently,
more processing time is required, which is a drawback for
protection relays. The Kalman filtering approach has its
limitation, as fault resistance cannot be modelled and
further it requires a number of different filters to accomplish
the task.

The speed and accuracy of distance relays of transmission
lines can be improved by accurate and fast faulty phase
selection, which is the primary requirement for protective
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relaying to start and trip correctly. In addition, faulty
phase selection can be used to increase system stability by
allowing  single-pole  tripping and autoreclosure.
Conventional approaches to phase selection based on
power—frequency measurements have disadvantages due
to fault resistance, fault distance, influence of mutual coup-
ling from adjacent lines, reactance effect, incomplete
knowledge of system parameters and so on. In this regard,
some new techniques have been adopted. A method based
on initial current travelling waves is presented in [7].
However, these approaches lead to increased hardware
requirement. Travelling waves, being high-frequency
signals, are difficult to separate from interference noise. In
recent years, techniques using artificial neural networks
(ANN) and fuzzy logic have been employed in faulty
phase selection [5, 8, 9] due to their superior ability to
learn and generalise from training patterns. However, in
the fault classification and location tasks, the neural net-
works cannot produce accurate results due to the inaccura-
cies in the input phasor data and the requirement of a large
number of neural networks for different categories of faults.
Back propagation neural network, radial basis function
neural network (RBFNN) and fuzzy neural network are
employed for adaptive protection of such a line where the
protection philosophy is viewed as a pattern classification
problem. The networks generate the trip or block signals
using a data window of voltages and currents at the relaying
point. However, the above approaches are sensitive to
system frequency changes and require large training sets
and training time and a large number of neurons.

This paper presents a new approach for faulty phase
selection and ground detection using support vector
machine (SVM). An SVM [10—14] is a relatively new
machine learning method that optimises model on training
data by solving a quadratic program (QP). In essence, an
SVM finds the maximal separating hyperplane in feature
space. It is computationally efficient because the transform-
ation to feature space need not be done explicitly because
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dot products in feature space can be represented by kernel
functions. The SVM-based classification is a modern
machine learning method that is rarely used in fault classi-
fication even if it has given superior results in various classi-
fication and pattern recognition problems such as in text
categorisation [15] or phoneme recognition [16].
Currently, there exist only a few publications that concen-
trate on developing fault diagnostic methods based on
SVM techniques [17, 18].

SVM has advantages over traditional approaches such as
neural networks for the following reasons.

1. Good generalisation performance — once it is presented
with a training set, it is able to learn a rule, which can cor-
rectly classify a new object quite often.

2. Computational efficiency — it is efficient in terms of
speed and complexity.

3. Robust in high dimensions — in general, dealing with
high-dimensional data is difficult for a learning algorithm
because of over-fitting. One of the major reasons for attract-
ing much attention is that SVMs are more robust to this
over-fitting than other algorithms.

In the proposed research work, the post-fault current and
voltage signals after fault inception are retrieved at the
relaying end for all phases at a sampling frequency of
1.0 kHz (20 samples per cycle). The proposed scheme
works with the consideration that the fault detection has
been done. The pre-fault and post-fault boundaries are
detected using the fault detector, which uses a short data
window (four samples) algorithm [19]. The final indication
of the fault is only given when three consecutive compari-
sons give the difference more than a specified threshold
value. After knowing the fault instance, one-fourth cycle
data of fault voltage and current signal (five samples
each) are used as features to train and test SVM 1 for
faulty phase selection. Similarly, SVM 2 is trained and
tested with peak of the zero-sequence components (resulted
from zero-sequence analyser) of fundamental, third and fifth
harmonic components of the post-fault current signal to
provide the involvement of ground in the fault process.
The polynomial and Gaussian kernel SVMs are trained
with features and labels to provide the most optimised
boundary for classification. Thus, first one-fourth cycle
data are used for fault detection and not included in the
fault classification process to avoid the effect of DC offset
on fault classification process. The next one-fourth cycle
data are used as input to the SVMs for faulty phase selection
and ground detection. Thus the total time taken for faulty
phase selection and ground detection is 10 ms from the
inception of fault (one-half cycle on 20 ms cycle time)

2 Support vector machine

The SVM is firmly grounded in the framework of statistical
learning theory, which characterises the properties of learn-
ing machines enabling them to generalise well to unseen
data. In SVM, original input space is mapped onto a high-
dimensional dot-product space called a feature space, and
in the feature space, the optimal hyperplane is determined
to maximise the generalisation ability of the classifier.
Traditional neural network approaches for the empirical
data modelling have suffered from difficulties with general-
isation, producing models that may over-fit the data. The
SVM learning is gaining popularity due to its many attrac-
tive features and promising empirical performance. Also,
SVM-based classifiers are claimed to have good generalis-
ation properties compared with conventional classifiers,
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because in training the SVM classifier, the so-called struc-
tural misclassification risk is to be minimised, whereas tra-
ditional classifiers are usually trained so that the empirical
risk is minimised. Structural risk minimisation minimises
an upper bound on the expected risk, as opposed to empiri-
cal risk minimisation that minimises the error on the train-
ing data. It is this difference that equips SVM with a greater
ability to generalise, which is the goal in statistical learning.
The SVM is compared with the RBFNN in an industrial
fault classification task [17], and it has been found to give
better generalisation.

Consider that n-dimensional input x;i =1, ..., M, M is
the number of samples) belongs to Class I or Class II and
associated labels be y; = +1 for Class I and y; = —1 for
Class II. For linearly separable data, we can determine a
hyperplane f(x) = 0 that separates the data

f(x):wa—f—b:Xn:wjxj—kb:O (1)
j=1

where w is an n-dimensional vector and b a scalar. w and b
determine the position of the separating hyperplane.
Function sign( f(x)) is also called the decision function. A
distinctly separating hyperplane satisfies the constraints
f(x;) = 1 if y; = +1 and results in

yf(x) =ywx,+b) for i=1,....M (2

The optimal separating hyperplane decides the maximum
margin, the maximum distance between the plane and the
nearest data. An example of the optimal separating hyper-
plane of two data sets is presented in Fig. 1. From the geo-
metry, the margin is found to be ||w|| —2, Taking into account
the noise with slack variables & and error penalty C, the
optimal hyperplane can be found by solving the following
convex quadratic optimisation problem

S DR M
min > lwl]~ + C; & "
ywx, +b)>1—¢&, fori=1,....M

At
S >0 foralli

where §; is measuring the distance between the margin and
the examples x; lying on the wrong side of the margin. The
calculations can be simplified by converting the problem

with Kuhn—Tucker conditions into the equivalent
4 The optimal separating y
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Fig.1 f(x) as a separating hyperplane lying in a high-
dimensional space

Support vectors are inside the circles
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Lagrange dual problem, which will be

M M
1 T
max  W(@) =) a5 ) aayye g
i=1 ik=0

M
st Y yey=0, C>e>0, i=1....M
i=1

4)

The number of variables of the dual problem is the
number of training data. Let us denote the optimal solution
of the dual problem with o* and w*. According to the
Karush—Kuhn—Tucker condition, the inequality condition
in (2) holds for the training input—output (feature and
label) pair (x;, y;) only if the associated a* is not 0. In this
case, the training example x; is a support vector (SV).
Usually, the number of SVs is considerably lower than the
number of training samples making SVM computationally
very efficient. The value of the optimal bias »* is found
from the geometry

1
b= =5 rei(Six + 5;x) )
SVs

where S; and S, are arbitrary SVs for Classes I and II,
respectively. Only the samples associated with the SVs
are summed, because the other elements of optimal
Lagrange multiplier o are equal to zero.

The final decision function will be given by

S =) ayxix+b* (6)

SVs

Then unknown data example x is classified as follows

Class | if f(x)>0
¥ {Class II, otherwise )
For nonlinear classification problems, SVM with appli-
cation of kernel function solves the purpose. The input
data are mapped onto a high-dimensional feature space,
where linear classification is possible. Using a nonlinear
vector function ¢p(x) = (d1(x), ..., ¢d.(x)), where m >>n,
to map the n-dimensional input vector x onto the
m-dimensional feature space, the linear decision function
in dual form is given by

@) =) o () ®)

SVs

Working in the high-dimensional feature space enables
the expression of complex functions, but it also generates
problems. High dimensionality creates the problem of over-
fitting and computational problems occur due to the large
feature vectors. The over-fitting problem is solved with
application of the maximal margin classifier, and kernels
provide solution to computational problem.

A function that returns a dot product of the feature
space mappings of original data points is called a kernel,
K(x, ) = ¢"(x)d(z). Applying a kernel function, the learn-
ing in the feature space does not require explicit evaluation
of ¢. Using a kernel function, the decision function will be

f@) =) afyK(xx) ©)

SVs

and the unknown data example is classified as before. The
values of K(x;, x;) over all training samples i, j =1, ...,
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M, the kernel matrix, which is a central structure in the
kernel theory. Mercer’s theorem states that any symmetric
positive-definite matrix can be regarded as a kernel
matrix. In this work, we used the polynomial kernel of the
following form

Kx,z2)=(x'z+1)" (10)

where n represents the degree of the inner product kernel.
Similarly, the Gaussian kernel used in this study is given
in (11), where o is the width of the Gaussian function
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2
K(x, z):exp{—lx_z| } (11)

3 System studied

The power system model shown in Fig. 2 is simulated using
PSCAD (EMTDC) software package. The relaying point is
as shown in Fig.1, where fault voltage and current signal
samples are retrieved for different fault conditions. Fig. 3
shows the fault voltage and current signal for three-phase
fault. The power system network consists of two areas of
400 kV generation capacities connected by 300 km long
transmission line. The transmission line model chosen for
the proposed study is of distributed type.

The transmission line parameters are zero-sequence
impedance (Zp) = 96.45 +j335.26 (), positive sequence
impedance (Z;) = 9.78 +;110.23 (), source impedances:
Zs=6+4,285Q, Zg =124,11.5Q, source voltages:
Es=400kV, Er = 400£La kV, where « is the load angle
in degrees.

The power system model is simulated at 1.0 KHz
sampling frequency. The voltage and current signals for
different fault conditions are retrieved at the relaying
point and fed to the SVMs for faulty phase selection and
ground detection. The proposed SVM-based relaying
scheme is shown in Fig. 4.

The proposed algorithm is also tested on a physical trans-
mission line model (experimental set-up). The transmission
line consists of two 150 km 7 sections (total 300 km) and
charged with 400 V, 5 kV A synchronous machines at one
end and 400 V at the load end. The three-phase voltage
and current are stepped down at the relaying end with poten-
tial transformer of 400/10 V and current transformer of 15/
5 A, respectively. Data are collected using PCL-208 Data
Acquisition Card, which uses 12-bit successive approxi-
mation technique for A/D (analogue to digital) conversion.
The card is installed on a personal computer (P-4) with a
driver software routine written in C++-. It has six I/O chan-
nels with input voltage range of +5 V. Data are colleted
with a sampling frequency of 1.0 kHz.

4 Computational results

This section deals with the training and testing results
obtained from the corresponding SVMs for faulty phase
selection and ground detection. Both polynomial and
Gaussian kernel-based mappings are used to obtain the

O

Ex

+— 300 KM —»

| |
Ot

Es

Relaying e
Point

Fig.2 Transmission line model
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Fig. 3 Fault voltage and current signal for three-phase fault

accurate results for classifying faults from unfaulted one.
The SVMs are trained with 300 data sets and validated
for 300 data sets for each category of fault generated from
simulation model and experimental set-up separately.
Initially, the RBFNN is tested and the performance is com-
pared with that of the proposed SVM technique for fault
classification.

4.1 Fault classification using RBFNN

The fault classification results using RBFNN [20] are given
in Table 1. In this approach, a pruning strategy is used to
select only a minimal number of hidden neurons by observ-
ing their outputs, and if at any stage it is observed that the
output of any neuron is insignificant, it is omitted from
the hidden layer. The current and voltage samples at the
relaying point are retrieved for different fault conditions
and peak of the samples are fed to the RBFNN for fault
classification. The RBFNN is tested with 300 data sets
from simulation model. Table 1 provides the fault classifi-
cation results using RBFNN for line—ground (L-G),
line—line—ground (LL-G), line—line (LL), line—line—
line—ground (LLL-G), line—line—line (LLL) faults. The
classification rate is 95.12% (maximum) in the case of
LLL-G fault and 93.75% for LL fault.

4.2 Fault classification using SVM

4.2.1 Phase selection (SVM 1): Initially, one-fourth
cycle fault signal is used for fault detection and the next
one-fourth post-fault current and voltage signal samples
are used as inputs to the SVM. The corresponding output
is either fault or no-fault condition. Five samples of
faulted voltage and five samples of faulted current signal
from the fault inception are retrieved at the relaying point
and the corresponding normalised values are used as input

—— —
SVM-1 — Fault
WS > classification
—] :‘}—

(5 samples)

Zero sequence

analyzer(1”, 3 5%) SVM-2 " Ground detection

Fig. 4 Proposed protection scheme
Fault classification (SVM 1) and Ground detection (SVM 2)
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Table 1: Classification rates of RBFNN for faulty phase
selection

Fault RBFNN classification
rates, %

L-G 94.89

L-G 94.34

LL 93.75

LLL 94.84

LLL-G 95.12

features space (ten points) to the SVMs, termed as x;. The
corresponding output is y;, which results in 1 for fault and
—1 for no-fault condition. The SVM 1 is trained with 300
data sets and tested with 300 data sets for each category
of fault, each set comprising of ten data points for x; as
input and (1, —1) for y; as the corresponding output.

Faults on the line are simulated with various operating
conditions including different incident angles 6, fault resist-
ance Ry (10-200 (), source capacities and at various
locations for all types of shunt faults. These shunt faults
are L-G, L-L, L-L-G, L-L-L and LLL-G. In case of
shunt faults, ‘a—g’, ‘b—g’ and ‘c—g’ are categorised under
L-G fault and ‘ab-g’, ‘bc—g’, ‘ca—g’ under LL-G.
Similarly, ‘a—b’, ‘b—c’ and ‘c—a’ correspond to L-L
fault and ‘abc—g’ corresponds to LLL—G fault. ‘abc’ is
categorised under LLL fault. Thus, there are 11 types of
shunt faults that occur on the power transmission line.

Here, n stands for the order of the polynomial and o for
the width of the Gaussian function. The bound on the
Lagrangian multipliers C is selected 5.0 and the condition-
ing parameter for QP method, A is chosen as 1 x 107°.
Different values of o with which the SVM is trained and
tested are 1.0 and 1.5. Similarly, the values selected for n
are 5 and 6. All the above parameters are selected after
cross-validation [21-23]. Different values of o and n are
used to make a comparison study on the classification rate
and support vectors generated. When the parameter values
of the polynomial and Gaussian kernels are changed, the
classification rate and the numbers of support vectors on
the optimised marginal plane vary accordingly.

Table 2 provides the classification rates and support
vectors during the training of SVMs for faulty phase selec-
tion and ground detection. The classification rate for faulty
phase selection is 99.26% (maximum) with 14 support
vectors and for ground detection is 99.69% (maximum)
with 13 support vectors. After the SVMs are trained with
the training data sets, the SVMs are tested or validated
with test data sets.

Table 3 shows the testing results for faulty phase patterns
for various operating conditions. As seen from the table, for
‘ab—g’(LL-G) fault at 30%, 6 = 45°, Ry = 50 (), the SVM 1
outputs for ‘a’ and ‘b’ are 1 but output for ‘c’ phase is — 1
for both polynomial and Gaussian kernels, which depicts
that fault occurs on ‘a’ and ‘b’ phases. Also for ‘bc’ fault
at 50%, 6 =60°, Rr= 100 Q) the output for ‘b’ and ‘¢’
phases are 1 but the output is —1 for ‘a’ phase. As seen,
the mis-classification occurs for the ‘abc—g’ (LLL-G)
fault at 90%, & =45°, Ry= 150 Q) with source changed,
with Gaussian kernel with o = 1.0 resulting output of ‘a’
phase as — 1 instead of 1. Table 4 depicts the classification
rates at different fault conditions with polynomial and
Gaussian kernels of different parameter values during the
testing of SVM. The classification rate is 97.25%
(minimum) at LLL—G fault with polynomial kernel with
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Table 2: Classification rates and support vectors during the training of SVM 1 and 2 for phase selection and ground

detection, respectively

Fault Kernel Parameter value Training results for faulty phase Training results for ground detection
selection (SVM 1) (SVM 2)
Classification Number of Classification Number of
rates, % support vectors rates, % support vectors
L-G poly n=5 98.89 19 99.15 15
poly n==6 99.26 14 99.01 13
Gaussian oc=1.0 98.11 15 99.00 12
Gaussian oc=15 98.34 12 99.27 09
LL-G poly n=5 98.45 10 98.99 11
poly n==6 98.25 11 98.46 08
Gaussian oc=1.0 98.99 09 99.49 10
Gaussian oc=15 98.97 08 98.98 06
LL poly n=>5 98.01 10 99.69 13
poly n==6 98.87 09 98.36 11
Gaussian oc=1.0 98.20 08 98.77 09
Gaussian oc=15 98.04 06 98.02 05
LLL poly n=5 98.32 19 99.03 17
poly n==6 97.98 14 98.00 14
Gaussian oc=1.0 98.99 10 98.37 12
Gaussian oc=15 98.03 09 98.53 09
LLL-G poly n=>5 98.05 12 98.10 10
poly n==6 98.89 10 98.98 07
Gaussian oc=1.0 97.99 08 99.18 09
Gaussian o=15 98.65 06 99.23 04

n =5 and the classification rate is 98.87% (maximum) for
LL—-G fault with Gaussian kernel with o = 1.0.

4.2.2 Ground detection (SVM 2): The ground detection
is done separately by training and testing SVM 2. The peak
value of the zero-sequence component of the fundamental
third and fifth harmonic components of post-fault current
signal are found and are used as the input x; (three inputs)
to the SVM-2 and the corresponding output (y;) is 1 for
the fault involving ground and —1 for fault without invol-
ving ground. As the zero-sequence components are pro-
nounced in the case of fault involving ground compared
with fault without involving ground, the SVM 2 is trained
to provide the classification for ground detection. The
SVM 2 is trained and tested with 300 data sets for each cat-
egory of fault, each set comprising three data points for x; as
input and (1, — 1) for y; as corresponding output.

Table 3 provides the ground detection patterns for
different fault conditions. It is found that for ‘b—g’ (L—
G) fault at 10%, 6 =30°, Rr= 10 (), the output is 1,
which shows that the fault involves ground. But for ‘bc’
(L-L) fault at 50%, & = 60°, Ry = 100 (), the output is
—1, which clearly shows that the fault does not involve
ground. Also mis-classification is observed for ‘abc—g’
(LLL-G) fault at 75%, & = 30°, Ry =200 Q) with source
changed, with polynomial kernel for » = 5, which pro-
duces output — 1 instead of 1. Also similar case happens
for ‘abc—g’ (LLL—G) fault at 90%, & = 45°, Ry = 150 Q)
with source changed, with Gaussian kernel for o = 1.0,
which results — 1 instead of 1. Table 4 shows the classifi-
cation rate of the SVM 2 for ground detection. The classi-
fication rate is 99.32% (maximum) for LL—G fault with
Gaussian kernel with o=1.0 and the 97.89%
(minimum) for LL fault with o= 1.5. The average
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classification rate for ground detection for 300 test cases
is found to be 98.61% for all types of faults with different
operating conditions.

4.2.3 Phase selection and ground detection for
experimental data sets: The proposed algorithm is
also tested for data from experimental set-up. The trained
SVMs are tested with 300 data sets from experimental
set-up. The results for faulty phase selection and ground
detection are given in Table 5. It is found that the trained
SVMs produce accurate results when compared with the
results using data from simulation model. The average
faulty phase selection rate is 97.96% and the average
ground detection is 98.50% compared with faulty phase
selection and ground detection rates of 98.02 and 98.62%,
respectively, using data from simulation study during
testing.

4.3 Discussion

It is found that SVMs 1| and 2 combined together provide
accurate results for phase selection and ground detection,
respectively. The performance comparison between
RBFNN and SVM is given in Table 6. It is observed that
when training size reduces, the classification accuracy
reduces drastically in the case of RBFNN compared with
SVM. For L-G fault, the classification accuracy of
RBFNN and SVM is 94.89 and 98.23%, respectively,
with 300 training and testing data sets. When the training
set decreases to 100 with testing set remaining 300, the
classification accuracy of RBFNN and SVM is 87.78 and
96.99%, respectively. Similar observations are made for
other fault situations with different training and testing
data sets. From the above results, it can be concluded that
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Table 3: Testing of SVM 1 for faulty phase patterns and SVM 2 for ground detection patterns

Fault Kernel Parameter value SVM 1 SVM 2
a-phase b-phase c-phase Ground

b-g fault at 10%, 6 = 30°, poly = -1 1 -1 1
R; =10 Q poly n==6 -1 1 -1 1
Gaussian oc=1.0 -1 1 -1 1
Gaussian o=15 -1 1 -1 1
ab-g fault at 30%, 6 = 45°, poly n=5 1 1 -1 1
R; =50 Q) poly n==6 1 1 -1 1
Gaussian o=1.0 1 1 -1 1
Gaussian o=15 1 1 -1 1
‘be’ fault at 50%, 6 = 60°, poly -1 1 1 -1
R; =100 Q) poly -1 1 1 -1
Gaussian o=1.0 -1 1 1 -1
Gaussian o=15 -1 1 1 -1
‘abc’ fault at 70%, 6 = 45°, poly n=>5 1 1 -1 -1
R: =150 Q) poly 1 1 1 -1
Gaussian o=1.0 1 1 1 -1
Gaussian oc=15 1 1 1 -1
‘abc-g’ fault at 90%, 6 = 45°, poly n=5 1 1 1 1
R; = 150 () with source poly 1 1 1 1
changed Gaussian o=1.0 -1 1 1 -1
Gaussian oc=15 1 1 1 1
‘ca—g’ fault at 45%, & = 60° poly n=5 1 -1 1 1
R; =100 Q poly n==6 1 -1 1 1
Gaussian o= 1 -1 1 1
Gaussian o=15 1 -1 1 1
‘c—g’ fault at 85%, & = 60°, poly n=>5 -1 -1 1 1
R; =150 Q) poly n==6 -1 -1 1 1
Gaussian o=1.0 -1 -1 1 1
Gaussian o= -1 -1 1 1
‘ab’ fault at 95%, 6 = 45°, poly n=5 1 1 -1 -1
R; = 200 Q) poly n==6 1 1 -1 -1
Gaussian o=1.0 1 1 -1 -1
Gaussian o=15 1 1 -1 -1
‘abc-g’ fault at 75%, 6 = 30°, poly n=5 1 -1 1 -1
R = 200 ) with source poly 1 1 1 1
changed Gaussian o=1.0 1 1 1 1
Gaussian o=15 1 1 1 1

SVM is the better approach to learn small size of data pat-
terns compared with RBFNN, which reflects the compu-
tational efficiency of designed SVM classifier.

The fault classification results obtained are accurate for
data from simulation model and experimental set-up. In
the proposed algorithm, the first one-fourth cycle data
after fault inception are used for fault detection and the
next one-fourth cycle data are used as input to the SVMs
for phase selection and ground detection, and the total
time taken in the phase selection and ground detection is
10 ms from the inception of fault (one-half cycle on
20 ms cycle time). Thus, the proposed SVM protection
scheme provides a fast and robust fault classifier for dis-
tance relaying. While comparing the efficiency and speed
of the algorithms, the RBFNN suffers because of complex
structure and high computation time. Because of higher
computational efficiency and speed, the proposed SVM
technique can be extended to develop the real-time
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protection relays for large power system network. The
algorithm is simple to develop and provide accurate
results for different fault situations with wide variations in
operating conditions of the power system network.

The performance of the designed SVM classifier for fault
classification in complex power networks such as looped
system and distributed power networks is studied. In the
case of above networks, fault current contains high decay-
ing DC offset and harmonics compared with the fundamen-
tal component. Thus, the designed SVMs may fail to
provide accurate fault classification. As the SVM par-
ameters are selected using a cross-validation process, it
does not provide accurate SVM parameters for wide vari-
ations in input sets, resulting in inaccurate classification.
In this case, selection of cross-validation process has a
major role to play, and the input data are to be tested on
different cross-validation process to provide SVM par-
ameters for accurate fault classification. Thus, the above
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Table 4: Classification rates of SVM 1 for faulty phase selection and SVM 2 for ground

detection during testing

Fault Kernel Parameter Classification rates Classification rates
value for phase selection for ground detection
(SVM 1), % (SVM 2), %
L-G poly = 98.16 99.05
poly = 98.19 98.74
Gaussian o=1.0 98.23 98.98
Gaussian =15 97.89 99.14
LL-G poly =5 98.15 98.96
poly =6 98.09 98.25
Gaussian o=1.0 98.87 99.32
Gaussian =15 97.84 98.39
LL poly = 97.84 99.25
poly 98.29 98.21
Gaussian 1.0 97.99 98.69
Gaussian =15 97.87 97.89
LLL poly =5 98.01 98.47
poly =6 97.56 97.98
Gaussian 1.0 98.68 98.02
Gaussian =15 97.87 98.07
LLL-G poly = 97.25 97.99
poly = 98.69 98.77
Gaussian o=1.0 97.86 99.05
Gaussian =15 98.15 99.06

Table 5: Classification rates of SVM 1 for faulty phase selection and SVM 2 for ground
detection for experimental data sets

Fault Kernel Parameter value Testing results Testing results
for faulty phase for ground
selection SVM 1 detection SVM 2
classification classification
rates, % rates, %
L-G poly =5 97.88 99.01
poly =6 97.11 98.56
Gaussian o=1 96.98 98.76
Gaussian =15 98.05 99.02
LL-G poly =5 97.95 98.74
poly 6 97.23 98.11
Gaussian 1.0 98.23 99.25
Gaussian =15 97.21 98.27
LL poly =5 98.98 99.32
poly =6 97.98 98.12
gaussian =1.0 98.43 98.56
gaussian =15 97.45 97.68
LLL poly =5 98.65 98.32
poly =6 97.12 97.78
Gaussian =1.0 97.99 97.99
Gaussian =15 97.76 98.01
LLL-G poly = 97.65 97.87
poly 98.67 98.69
Gaussian o=1 99.01 98.97
Gaussian =15 98.92 98.99
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Table 6: Performance comparison between SVM and RBFNN

Case Train/test Data sets Fault Classification test result, %
RBFNN SVM
(o= 1.0)
Case 1 training 300 L-G 94.89 98.23
testing 300
Case 2 training 200 91.21 97.58
testing 300
Case 3 training 100 87.78 96.99
testing 300
Case 1 training 300 LL-G 94.34 98.87
testing 300
Case 2 training 200 91.83 97.69
testing 300
Case 3 training 100 87.95 96.01
testing 300
Case 1 training 300 L-L 93.75 97.99
testing 300
Case 2 training 200 91.87 96.42
testing 300
Case 3 training 100 88.12 95.68
testing 300
Case 1 training 300 LLL 94.84 98.68
testing 300
Case 2 training 200 91.45 97.95
testing 300
Case 3 training 100 87.87 96.23
testing 300
Case 1 training 300 LLL-G 95.12 97.86
testing 300
Case 2 training 200 92.64 96.84
testing 300
Case 3 training 100 88.25 95.25
testing 300

critical conditions of the power system network and their
impacts on SVM classifier are being studied and will be
reported later.

5 Conclusions

An SVM based protection scheme (fault classifier) for large
power transmission line is presented in this paper. In the
proposed technique, one-fourth cycle post-fault current
and voltage samples are collected at the relaying point
and fed to the SVMs as inputs, and it provides information
about the faulty phase and ground involved in the fault
process. SVM 1 is trained and tested with the faulted
voltage and current samples to provide faulty phase selec-
tion, and SVM 2 is trained and tested with the peak of the
zero-sequence currents to provide the involvement of
ground in the fault process. The polynomial and Gaussian
kernels-based SVMs provide faulty phase selection and
ground detection with error <2%. The results are compared
with the RBF neural networks (previous work) and found
better with respect to the efficiency and speed. The proposed
method detects and classifies the faults within one-half
cycle from the inception of fault (10 ms). Also, the algor-
ithm is tested for experimental set-up and provides accurate
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results for faulty phase selection and ground detection.
Hence, the proposed technique is very fast, accurate and
robust to protect large power transmission networks.
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