
Abstract— Short term load forecasting 
is essential to the operation of electricity 
companies. It enhances the energy-
efficient and reliable operation of power 
system. Neural networks (NNs) have 
powerful nonlinear mapping 
capabilities. Therefore, they have been 
used to deal with predicting, in which 
the conventional methods fail to give 
satisfactory results. A novel Recurrent 
neural network (RNN) is proposed in 
this paper. Many types of computational 
intelligent methods are available for 
time series prediction. The novelty of 
this RNN lies in the usage of neurons 
instead of simple feedback loops for 
temporal relations. There is flexibility to 
use any type of activation functions in 
both feed forward and feedback loops.
Number of hidden neurons can be 
changed on case to case basis for 
maximum accuracy. The performance 
of the RNN is demonstrated to be better 
than several other computational 
intelligent methods available.

Index Terms—Short term load 
forecasting, recurrent neural network, 
computational intelligence.

I. INTRODUCTION

Short term load forecasting is a time series 
prediction problem. It analyzes the pattern 
of future electrical load. The information is 
crucial to determine hydro-thermal 
generation mixture, to allot transmission 
corridor, to decrease over all loss of grid, 
and to increase operational efficiency. 

The load is decomposed into two 
components. One is weather dependent, 

and the other is weather independent. Each 
component is modeled separately and the 
sum of these two gives the total load 
forecast. The behavior of these two 
controls the total load pattern. The 
behavior of weather independent load is 
mostly represented by Fourier series or 
trend profiles in terms of the time 
functions. The weather sensitive portion of 
the load is arbitrarily extracted and 
modeled by a predetermined functional 
relationship with weather variables.

Time series nonlinear predictors can be 
formed by placing zero-memory 
nonlinearity within the output stage of 
classical linear predictor. The nonlinearity 
is restricted to the output stage, as in a 
single layer neural network realization. On 
the other hand, if the nonlinearity is 
distributed through many layers of 
weighted interconnections, the concept of 
neural networks is fully exploited and 
more powerful nonlinear predictors may 
ensue. For the purpose of prediction, 
memory stages may be introduced at the 
input or within the network. In the 
prediction of hourly load, the network will 
have only one output neuron with a 
predicted value. For a dynamic system, 
such as a recurrent neural network for 
prediction, the state represents a set of 
quantities that summarizes all the 
information about the past behavior of the 
system that is needed to uniquely describe 
its future behavior.

The provision of feedback with delay 
introduces memory to the network and so 
is appropriate for prediction in case of 
recurrent neural networks. The feedback 
within it can be achieved either a local or 
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global manner. The local feedback is 
achieved by the introduction of feedback 
within the hidden layer, whereas the global 
feedback is produced by the connection of 
the network output to the network input as 
shown in figure 1. Inter neuron 
connections are also possible. The use of 
the large number of tapped delay feedback 
input increases the input dimension, 
resulting in increased dimensionality 
problem. 
Furthermore, the recurrent systems can 
inherently produce multistep ahead 
predictions; so, the multistep ahead 
prediction models, which are required in 
some process control applications, such as 
predictive control, can efficiently be built 
by RNNs [1]. Thus, the RNNs have 
attracted great interest. The Hopfield [2], 
the Elman [3], the Jordan [4], the fully 
recurrent [5], the locally-recurrent [6], the 
recurrent radial basis function [7], and the 
block-structured recurrent [8] networks are 
some of the examples of RNNs. In these 
structures, the feedback weights, assumed 
to be unity, are not trainable. The Hopfield 
network [2] is a simple recurrent network 
which has a fully connected single-layer 
structure. It is capable of restoring 
previously learned static patterns from 
their corrupted realizations. Elman [3] and 
Jordan [4] proposed specific recurrent 
networks which have an extra set of 
context nodes that copy the delayed states 
of the hidden or output nodes back to the 
hidden layer neurons. In these structures, 
the feedback weights, assumed to be unity, 
are not trainable. The fully recurrent neural 
network [5] allows any neuron to be 
connected to any other neuron in the 
network. While being more general, it 
lacks stability. In [6], the local feedback 
has been taken before the entry into the 
nonlinearity activation function. In [7], the 
past output values of a radial basis 
function network are fed back to both the 
network input and output nodes. In [8], a
systematic way to build networks of high
complexity using a block notation was 
given. The fully recurrent neural network 

allows any neuron to be connected to any 
other neuron in the network. While being 
more general, it lacks stability.

In this paper, the architecture and 
training procedure of a new RNN useful 
for short term load prediction / forecasting 
is presented. The structure of the proposed 
RNN differs from the other RNNs in the 
literature. The main difference of the
proposed network compared to the 
available RNNs is that the temporal 
relations are provided by means of neurons 
arranged in three feedback layers, not by 
simple feedback elements, in order to 
enrich the representation capabilities of the 
recurrent networks. The feedback signals 
are processed in three feedback layers 
which contain neurons as in feedforward 
layers. In these feedback layers, the 
weighted sums of the delayed outputs of 
the hidden and output layers are passed 
through activation functions and applied to 
the feedforward neurons via some 
adjustable weights.

Following this introduction the 
remaining paper is organized as under.
Section II provides details of proposed 
recurrent neural network while Section III 
analyzes the input & output parameters. 
The experimental results are presented in 
Section IV. Section V provides concluding 
remarks.

Figure 1. Structure of a recurrent neural network 
with local and global feedback



II. PROPOSED RECURRENT NEURAL
NETWORK

The RNN architecture used here is 
presented in figure 2, where 

)(&)( kykInput represents the input and 
output of the RNN, respectively, and k  is 
the time index. The RNN has three 
feedforward and feedback layers. In the 
feedforward layers, 21 &WW , represent the 
weights between the input and hidden 
layers, and the hidden and output layers, 
respectively. In addition to the 
feedforward layers, the RNN has two local 
and one global feedback layers. In these 
feedback layers, the weighted sums of the 
delayed outputs of the hidden and output 
layers are applied to certain activation 
functions as in the feedforward layer 
neurons. 321 &, bbb WWW  represent the 
weights connected to the inputs of the 
feedback layer neurons and 1z represents 
the time delay operators. The outputs of 
the feedback layers neurons 

)(&)(),( kzkykh ccc  are applied to the 
hidden and output layers neurons via the 
adjustable weights 321 &, ccc WWW . 

The number of hidden neurons in 
this case is taken as two but should be 
tuned as per requirement of individual 
problem requirements. The number of 
neurons in the feedback layer from the 
hidden-to-hidden layer is set equal to the 
number of the hidden layer neurons i.e. 
two. The number of neurons in the 
feedback layer from the output-to-hidden 
layer is set equal to the number of the 
output layer neurons i.e. one. The number 
of neurons in the feedback layer from the 
output-to-output layer is set equal to the 
number of the output layer neurons i.e. 
one. However, their numbers can be 
adjusted to improve the accuracy on case 
to case basis. The numbers were finalized 
on trial and error.

Since the weights are updated by 
the back propagation method, the 
calculation of the Jacobian matrix is 
required. The backward phase 
computations from Tk  to 1k are 

performed by means of the back 
propagated path values of the MFLNN. 
When the forward and backward phases of 
the computations are completed, the 
sensitivities for each weight, which form 
the Jacobian matrix, are obtained as in the 
back propagation algorithm. 

As it was expressed previously, the 
elements of the Jacobian matrix are 
computed in two stages which are referred 
to as the forward and backward phases. In 
the forward phase, the RNN actions are 
computed and stored from 1k to 

Tk  through the trajectory. The errors at 
every k are determined as the differences 
between the desired outputs and the RNN 
outputs. The initial values for the output of 
the hidden layer  h and of the output layer 
 y are set to 0.  The net quantities 
produced at the input of the activation 
functions of the feedback neurons are
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Where 321 &, bbb WWW the input weights of 
the feedback layers and 321 &, bbb BBB are 
the biases of the feedback layer neurons. 
The outputs of the feedback layer neurons 

ccc zyh &, are computed by
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Where tanh  represent the activation 
functions of the feedback layer neurons. 
The net quantities 



Figure 2. Structure of the proposed RNN

forout of the hidden layer neurons and their 
outputs  h are computed by
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Where 1W represents the weights between 
the input and hidden layers, and 1B the 
biases applied to the hidden layer neurons. 

21 & cc WW  are the weights of the feedback 
layers. tanh  represents the hidden layer 
activation functions. Similarly, the net 
quantities yforout of the output layer 

neurons and their outputs  y are computed 
by
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Where tanh&, 22 BW  represent the weights 
between the hidden and output layers, the 
biases applied to the output layer neurons, 
and the output layer activation functions, 
respectively. 3cW  represents the output 
weights of the feedback layer. The error 
signal  e is defined as the difference 

between the RNN output  y and the 
desired output  Output .

)()()( kOutputkyke 

The weights are adjusted to minimize the 
error  e , so the sensitivities with respect to 
each weight have to be computed. At 
every  k , the sensitivity for each weight is 
computed by multiplying the input of this 
weight in the RNN and the back 
propagated path, so the inputs of the 
weights in the back propagated path have 
to be computed. Therefore, after 
completing the forward phase 
computations, the backward phase 
computation is carried out through the 
back propagated path of RNN from Tk 
to 1k . The local sensitivities at 

1 Tk are set to 0.
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The local sensitivities are obtained as
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Then, the sensitivity for each weight is 
computed by multiplying the values scaled 
by this weight in the RNN and the back 
propagated path as follows:
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Then network weights & biases can be 
calculated as follows:






















































































































3
33

3
33

3
33

2
22

2
22

2
22

1
11

1
11

1
11

)(
*)(*

)(
*)(*

)(
*)(*

)(
*)(*

)(
*)(*

)(
*)(*

)(
*)(*

)(
*)(*

)(
*)(*

c
cc

b
bb

b
bb

c
cc

b
bb

b
bb

c
cc

b
bb

b
bb

W

ke
ceWW

B

ke
ceBB

W

ke
ceWW

W

ke
ceWW

B

ke
ceBB

W

ke
ceWW

W

ke
ceWW

B

ke
ceBB

W

ke
ceWW







































































2
22

2
22

1
11

1
11

)(
*)(*

)(
*)(*

)(
*)(*

)(
*)(*

B

ke
ceBB

W

ke
ceWW

B

ke
ceBB

W

ke
ceWW









   is the learning rate of the RNN.
“Purelin” & “logsig” activation functions 
are used in this simulation.

III. INPUT & OUTPUT FOR THE RNN
MODEL

In our analysis, the ANN model 
uses nine inputs, which constitute the load 
at hour ‘hr-1’ , ‘hr-2’, ‘hr-3’ of same day, 
‘hr’, ‘hr-1’, ‘hr-2’ of previous day, & ‘hr’, 
‘hr-1’, ‘hr-2’ of same day of previous 
week. Only one output node is used 
representing a 24-hour ahead load forecast 
at hour ‘hr’ in the lead time. 

The reason behind taking the 
specific inputs are as follows: It takes into 
consideration the hour of the day effect to 
map hourly load variation. Day of the 
week is taken into account to map weekly 
pattern of industrial and commercial load 
pattern on week days and weekends. 
Seasonal variation is gradual so previous 
day load pattern as an explicit input takes 
care of seasonal mapping.

IV. SIMULATION RESULTS

The acceptable criteria for a particular 
model is based upon the (i) mean average 
percentage error (MAPE), (ii) number of 
hours in which it gives negative MAPE, 
(iii) time taken by the model to get trained. 
The acceptable criteria (i) & (iii) are self 
explanatory. The second criteria signifies 
the under estimation of required load. 
Under estimation of load may stress the 
generation units. The performance of the 
proposed system has been compared with 



performance of other soft computing 
techniques using same training data set.

The mean average percentage error (i.e. 
MAPE) in case of Back propagation 
trained Multi Layer Perceptron Neural 
Network (BP-MLP), was found to be 
3.5543 % with logsig activation function
with a network using 17 hidden neurons, 
learning rate of 0.1, & Guyen-Widrow 
parameter initialization [9].

In case of Genetic Algorithm trained 
Multi Layer Perceptron Neural Network 
(GA-MLP), the best result was found to 
be, MAPE of 3.1943 %, with 4 hidden 
neurons, and tansig activation function,.

In case of Particle Swarm Optimization 
trained Multi Layer Perceptron Neural 
Network (PSO-MLP), the best MAPE of 
4.2118 % was achieved using 4 hidden 
neurons using logsig activation function.

In case of the proposed RNN, the best 
result was MAPE of 2.9633 %, with 2 
hidden neurons and tanh activation 
function.

We have compared result with Adaptive 
Neuro Fuzzy Inference System (ANFIS), 
which provided best performance MAPE 
of 4.5250 %.

Table 1. MAPE comparisons
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Figure 3.  BP – MLPNN prediction
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Figure 4.  GA – MLPNN prediction
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Figure 5. PSO – MLPNN prediction

Network MAPE in %
BP-MLP 3.5543
GA-MLP 3.1934
PSO-MLP 4.2118

ANFIS 4.5250
Proposed RNN 2.9633

MAPE: 3.5543 %

MAPE: 4.2118 %

MAPE: 3.1934 %
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Figure 6. ANFIS prediction
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Figure 7. Proposed RNN prediction
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Table 2. Percentage Error in Hourly Load Forecasting by Proposed RNN Model
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Table 3. Performance Index Comparison of Proposed RNN Model

The prediction performance of BP-
MLPNN, GA-MLPNN, PSO-MLPNN, 
ANFIS and the proposed RNN over a 
period of 21 hours is presented in figure 3. 
through figure 7. From figure 7. it is clear 
that the proposed network is able to track 
and predict the variation of load. 

In Table.2, the prediction 
performance of the proposed RNN is 
tabulated taking into consideration type of 
initialization method & number of hidden 
neurons. The first row gives the formula / 
standard Matlab functions used to initialize 
the parameters (weight & bias) of neurons.
The value of A is taken as 0.72, Rand, 
Randnr, Rands, Randnc are standard 
Matlab random value generation functions.  
NW is Nguyen Widrow method of 
parameter initialization. The network is 
trained and tested with same set of 
historical data, so that we can select the 
parameter initialization method which will 
give the least Mean Average Percentage 
Error (MAPE). After the network is 
trained, it is subjected to testing data for 
prediction of next 21 (twenty one) hours
load. The % prediction errors for each type 
of initialization method are delineated 
column wise under the respective 
initialization methods. 

In Table. 3, first row signifies 
summation of absolute percentage errors, 
second row gives number of minimum 
percentage errors provided by each method
for a given testing data set, third row gives 
the number of negative % errors, fourth 
row gives the MAPE & fifth row gives the 
computation time required for testing for 
respective parameter initialization method.

V. CONCLUSION

The performance of the proposed 
RNN is compared with several other

computational intelligence methods like 
multi layer perceptron neural network 
(MLPNN), MLPNN trained by GA, 
MLPNN trained by PSO, ANFIS to show 
the superiority in terms of accuracy of 
prediction. It has been shown that the 
proposed RNN achieves higher accuracy 
with less number of neurons.

The main advantages of the 
proposed RNN are as follows:

The temporal relations are 
provided by neurons, not be simple 
feedback paths, which enhance the 
nonlinear mapping capability.

 It has a flexible feedback structure, 
so we can use different types of activation 
functions and different number of neurons 
on case to case basis for increasing 
accuracy.
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