
Abstract— Short term load forecasting
is essential to the operation of electricity
companies. It enhances the energy-
efficient and reliable operation of power
system. Neural networks (NNs) have
powerful nonlinear mapping
capabilities. Therefore, they have been
used to deal with predicting, in which
the conventional methods fail to give
satisfactory results. A novel Recurrent
neural network (RNN) is proposed in
this paper. Many types of computational
intelligent methods are available for
time series prediction. The novelty of
this RNN lies in the usage of neurons
instead of simple feedback loops for
temporal relations. There is flexibility to
use any type of activation functions in
both feed forward and feedback loops.
Number of hidden neurons can be
changed on case to case basis for
maximum accuracy. The performance
of the RNN is demonstrated to be better
than several other computational
intelligent methods available.

Index Terms—Short term load
forecasting, recurrent neural network,
computational intelligence.

I. INTRODUCTION

Short term load forecasting is a time series
prediction problem. It analyzes the pattern
of future electrical load. The information is
crucial to determine hydro-thermal
generation mixture, to allot transmission
corridor, to decrease over all loss of grid,
and to increase operational efficiency.

The load is decomposed into two
components. One is weather dependent,

and the other is weather independent. Each
component is modeled separately and the
sum of these two gives the total load
forecast. The behavior of these two
controls the total load pattern. The
behavior of weather independent load is
mostly represented by Fourier series or
trend profiles in terms of the time
functions. The weather sensitive portion of
the load is arbitrarily extracted and
modeled by a predetermined functional
relationship with weather variables.

Time series nonlinear predictors can be
formed by placing zero-memory
nonlinearity within the output stage of
classical linear predictor. The nonlinearity
is restricted to the output stage, as in a
single layer neural network realization. On
the other hand, if the nonlinearity is
distributed through many layers of
weighted interconnections, the concept of
neural networks is fully exploited and
more powerful nonlinear predictors may
ensue. For the purpose of prediction,
memory stages may be introduced at the
input or within the network. In the
prediction of hourly load, the network will
have only one output neuron with a
predicted value. For a dynamic system,
such as a recurrent neural network for
prediction, the state represents a set of
quantities that summarizes all the
information about the past behavior of the
system that is needed to uniquely describe
its future behavior.

The provision of feedback with delay
introduces memory to the network and so
is appropriate for prediction in case of
recurrent neural networks. The feedback
within it can be achieved either a local or

Short Term Load Forecasting using A Novel
Recurrent Neural Network

 Sanjib Mishra Sarat Kumar Patra, Member IEEE
NIT Rourkela NIT Rourkela
E-mail: sanjib.mishra77@gmail.com E-mail: skpatra@nitrkl.ac.in

global manner. The local feedback is
achieved by the introduction of feedback
within the hidden layer, whereas the global
feedback is produced by the connection of
the network output to the network input as
shown in figure 1. Inter neuron
connections are also possible. The use of
the large number of tapped delay feedback
input increases the input dimension,
resulting in increased dimensionality
problem.
Furthermore, the recurrent systems can
inherently produce multistep ahead
predictions; so, the multistep ahead
prediction models, which are required in
some process control applications, such as
predictive control, can efficiently be built
by RNNs [1]. Thus, the RNNs have
attracted great interest. The Hopfield [2],
the Elman [3], the Jordan [4], the fully
recurrent [5], the locally-recurrent [6], the
recurrent radial basis function [7], and the
block-structured recurrent [8] networks are
some of the examples of RNNs. In these
structures, the feedback weights, assumed
to be unity, are not trainable. The Hopfield
network [2] is a simple recurrent network
which has a fully connected single-layer
structure. It is capable of restoring
previously learned static patterns from
their corrupted realizations. Elman [3] and
Jordan [4] proposed specific recurrent
networks which have an extra set of
context nodes that copy the delayed states
of the hidden or output nodes back to the
hidden layer neurons. In these structures,
the feedback weights, assumed to be unity,
are not trainable. The fully recurrent neural
network [5] allows any neuron to be
connected to any other neuron in the
network. While being more general, it
lacks stability. In [6], the local feedback
has been taken before the entry into the
nonlinearity activation function. In [7], the
past output values of a radial basis
function network are fed back to both the
network input and output nodes. In [8], a
systematic way to build networks of high
complexity using a block notation was
given. The fully recurrent neural network

allows any neuron to be connected to any
other neuron in the network. While being
more general, it lacks stability.

In this paper, the architecture and
training procedure of a new RNN useful
for short term load prediction / forecasting
is presented. The structure of the proposed
RNN differs from the other RNNs in the
literature. The main difference of the
proposed network compared to the
available RNNs is that the temporal
relations are provided by means of neurons
arranged in three feedback layers, not by
simple feedback elements, in order to
enrich the representation capabilities of the
recurrent networks. The feedback signals
are processed in three feedback layers
which contain neurons as in feedforward
layers. In these feedback layers, the
weighted sums of the delayed outputs of
the hidden and output layers are passed
through activation functions and applied to
the feedforward neurons via some
adjustable weights.

Following this introduction the
remaining paper is organized as under.
Section II provides details of proposed
recurrent neural network while Section III
analyzes the input & output parameters.
The experimental results are presented in
Section IV. Section V provides concluding
remarks.

Figure 1. Structure of a recurrent neural network
with local and global feedback

II. PROPOSED RECURRENT NEURAL
NETWORK

The RNN architecture used here is
presented in figure 2, where

)(&)(kykInput represents the input and
output of the RNN, respectively, and k is
the time index. The RNN has three
feedforward and feedback layers. In the
feedforward layers, 21 &WW , represent the
weights between the input and hidden
layers, and the hidden and output layers,
respectively. In addition to the
feedforward layers, the RNN has two local
and one global feedback layers. In these
feedback layers, the weighted sums of the
delayed outputs of the hidden and output
layers are applied to certain activation
functions as in the feedforward layer
neurons. 321 &, bbb WWW represent the
weights connected to the inputs of the
feedback layer neurons and 1z represents
the time delay operators. The outputs of
the feedback layers neurons

)(&)(),(kzkykh ccc are applied to the
hidden and output layers neurons via the
adjustable weights 321 &, ccc WWW .

The number of hidden neurons in
this case is taken as two but should be
tuned as per requirement of individual
problem requirements. The number of
neurons in the feedback layer from the
hidden-to-hidden layer is set equal to the
number of the hidden layer neurons i.e.
two. The number of neurons in the
feedback layer from the output-to-hidden
layer is set equal to the number of the
output layer neurons i.e. one. The number
of neurons in the feedback layer from the
output-to-output layer is set equal to the
number of the output layer neurons i.e.
one. However, their numbers can be
adjusted to improve the accuracy on case
to case basis. The numbers were finalized
on trial and error.

Since the weights are updated by
the back propagation method, the
calculation of the Jacobian matrix is
required. The backward phase
computations from Tk to 1k are

performed by means of the back
propagated path values of the MFLNN.
When the forward and backward phases of
the computations are completed, the
sensitivities for each weight, which form
the Jacobian matrix, are obtained as in the
back propagation algorithm.

As it was expressed previously, the
elements of the Jacobian matrix are
computed in two stages which are referred
to as the forward and backward phases. In
the forward phase, the RNN actions are
computed and stored from 1k to

Tk through the trajectory. The errors at
every k are determined as the differences
between the desired outputs and the RNN
outputs. The initial values for the output of
the hidden layer h and of the output layer
 y are set to 0. The net quantities
produced at the input of the activation
functions of the feedback neurons are

 33

22

11

)1(*)(

)1(*)(

)1(*)(

0)0(,0)0(

bbcz

bbcy

bbch

BkyWkforout

BkyWkforout

BkhWkforout

yh

Where 321 &, bbb WWW the input weights of
the feedback layers and 321 &, bbb BBB are
the biases of the feedback layer neurons.
The outputs of the feedback layer neurons

ccc zyh &, are computed by

)(tanh

)(tanh

)(tanh

kforoutz

kforouty

kforouth

czc

cyc

chc

Where tanh represent the activation
functions of the feedback layer neurons.
The net quantities

Figure 2. Structure of the proposed RNN

forout of the hidden layer neurons and their
outputs h are computed by

)(tanh)(

)(*

)(*
)(*)(

12

1
1

kforoutkh

BkyW

khW
kInputWkforout

h

T
cc

ccT
h

Where 1W represents the weights between
the input and hidden layers, and 1B the
biases applied to the hidden layer neurons.

21 & cc WW are the weights of the feedback
layers. tanh represents the hidden layer
activation functions. Similarly, the net
quantities yforout of the output layer

neurons and their outputs y are computed
by

)()(

)(*)(*)(232

kforoutpurelinky

BkzWkhWkforout

y

ccy
TT

Where tanh&, 22 BW represent the weights
between the hidden and output layers, the
biases applied to the output layer neurons,
and the output layer activation functions,
respectively. 3cW represents the output
weights of the feedback layer. The error
signal e is defined as the difference

between the RNN output y and the
desired output Output .

)()()(kOutputkyke

The weights are adjusted to minimize the
error e , so the sensitivities with respect to
each weight have to be computed. At
every k , the sensitivity for each weight is
computed by multiplying the input of this
weight in the RNN and the back
propagated path, so the inputs of the
weights in the back propagated path have
to be computed. Therefore, after
completing the forward phase
computations, the backward phase
computation is carried out through the
back propagated path of RNN from Tk
to 1k . The local sensitivities at

1 Tk are set to 0.

0)1(

0)1(

0)1(

1

2

3

T

T

T

c

c

c

The local sensitivities are obtained as

)(**)(sec)(

)(**)(sec)(

)(**)(sec)(

)(*

)1(*
*)(sec)(

)1(*

)1(*1
*)(sec)(

11
2

1

12
2

2

23
2

3

22

112
1

33

222
2

kWkforouthk

kWkforouthk

kWkforouthk

kW

kW
kforouthk

kW

kW
kforouthk

cchc

ccyc

cczc

cb
h

cb

cb
y

Then, the sensitivity for each weight is
computed by multiplying the values scaled
by this weight in the RNN and the back
propagated path as follows:

)(
)(

)(
)(

)(
)(

)1(*)(
)(

)(*)(
)(

)1(*)(
)(

)(*)(
)(

)1(*)(
)(

)(*)(
)(

)(
)(

)(*)(
)(

)(
)(

)(*)(
)(

1
1

2
2

3
3

1
1

1
1

2
2

1
2

3
3

2
3

1
1

1
1

2
2

2
2

k
B

ke

k
B

ke

k
B

ke

khk
W

ke

khk
W

ke

kyk
W

ke

kyk
W

ke

kyk
W

ke

kzk
W

ke

k
B

ke

kInputk
W

ke

k
B

ke

khk
W

ke

c
b

c
b

c
b

T
c

b

T
c

c

T
c

b

T
c

c

T
c

b

T
c

c

Then network weights & biases can be
calculated as follows:

3
33

3
33

3
33

2
22

2
22

2
22

1
11

1
11

1
11

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

c
cc

b
bb

b
bb

c
cc

b
bb

b
bb

c
cc

b
bb

b
bb

W

ke
ceWW

B

ke
ceBB

W

ke
ceWW

W

ke
ceWW

B

ke
ceBB

W

ke
ceWW

W

ke
ceWW

B

ke
ceBB

W

ke
ceWW

2
22

2
22

1
11

1
11

)(
)(

)(
)(

)(
)(

)(
)(

B

ke
ceBB

W

ke
ceWW

B

ke
ceBB

W

ke
ceWW

 is the learning rate of the RNN.
“Purelin” & “logsig” activation functions
are used in this simulation.

III. INPUT & OUTPUT FOR THE RNN
MODEL

In our analysis, the ANN model
uses nine inputs, which constitute the load
at hour ‘hr-1’ , ‘hr-2’, ‘hr-3’ of same day,
‘hr’, ‘hr-1’, ‘hr-2’ of previous day, & ‘hr’,
‘hr-1’, ‘hr-2’ of same day of previous
week. Only one output node is used
representing a 24-hour ahead load forecast
at hour ‘hr’ in the lead time.

The reason behind taking the
specific inputs are as follows: It takes into
consideration the hour of the day effect to
map hourly load variation. Day of the
week is taken into account to map weekly
pattern of industrial and commercial load
pattern on week days and weekends.
Seasonal variation is gradual so previous
day load pattern as an explicit input takes
care of seasonal mapping.

IV. SIMULATION RESULTS

The acceptable criteria for a particular
model is based upon the (i) mean average
percentage error (MAPE), (ii) number of
hours in which it gives negative MAPE,
(iii) time taken by the model to get trained.
The acceptable criteria (i) & (iii) are self
explanatory. The second criteria signifies
the under estimation of required load.
Under estimation of load may stress the
generation units. The performance of the
proposed system has been compared with

performance of other soft computing
techniques using same training data set.

The mean average percentage error (i.e.
MAPE) in case of Back propagation
trained Multi Layer Perceptron Neural
Network (BP-MLP), was found to be
3.5543 % with logsig activation function
with a network using 17 hidden neurons,
learning rate of 0.1, & Guyen-Widrow
parameter initialization [9].

In case of Genetic Algorithm trained
Multi Layer Perceptron Neural Network
(GA-MLP), the best result was found to
be, MAPE of 3.1943 %, with 4 hidden
neurons, and tansig activation function,.

In case of Particle Swarm Optimization
trained Multi Layer Perceptron Neural
Network (PSO-MLP), the best MAPE of
4.2118 % was achieved using 4 hidden
neurons using logsig activation function.

In case of the proposed RNN, the best
result was MAPE of 2.9633 %, with 2
hidden neurons and tanh activation
function.

We have compared result with Adaptive
Neuro Fuzzy Inference System (ANFIS),
which provided best performance MAPE
of 4.5250 %.

Table 1. MAPE comparisons

0 5 10 15 20 25
1600

1700

1800

1900

2000

2100

2200

2300

2400
Network Output

Output

M
ag

ni
tu

de

Desired Output

Trained Network Output

Figure 3. BP – MLPNN prediction

0 2 4 6 8 10 12 14 16 18 20
1700

1800

1900

2000

2100

2200

2300

2400
Network Output

Output

M
ag

ni
tu

de

Desired Output

Trained Network Output

Figure 4. GA – MLPNN prediction

0 2 4 6 8 10 12 14 16 18 20
1700

1800

1900

2000

2100

2200

2300

2400
Network Output

Output

M
ag

ni
tu

de

Desired Output

Trained Network Output

Figure 5. PSO – MLPNN prediction

Network MAPE in %
BP-MLP 3.5543
GA-MLP 3.1934
PSO-MLP 4.2118

ANFIS 4.5250
Proposed RNN 2.9633

MAPE: 3.5543 %

MAPE: 4.2118 %

MAPE: 3.1934 %

0 5 10 15 20 25
1600

1700

1800

1900

2000

2100

2200

2300

2400
Desired and ANFIS Outputs

Time

M
ag

ni
tu

de

Desired Output

Trained Network Output

Figure 6. ANFIS prediction

0 5 10 15 20 25
1600

1700

1800

1900

2000

2100

2200

2300

2400

2500
Network Output

Output

M
ag

ni
tu

de

Desired Output

Trained Network Output

Figure 7. Proposed RNN prediction

A.*R
and-
(A/2)
9-2-1

A.*R
and-
(A/2)
9-3-1

2.*R
and-

1
9-2-1

2.*R
and-

1
9-3-1

Ran
ds

9-2-1

Ran
ds

9-3-
1

Rand
nr

9-2-1

Rand
nr

9-3-1

Ran
dnc

9-2-1

Ran
dnc

9-3-1

Ran
d

9-2-1

Ran
d

9-3-1

NW
9-2-1

NW
9-3-1

Min.
%

Erro
r

4.171 4.107 3.126 4.416 3.126 4.41 -0.98 -4.29 4.03 4.53 4.57 5.15 3.92 3.80 0.98

4.416 4.243 4.546 3.668 4.546 3.66 -4.61 -15.1 2.80 7.05 7.31 6.53 5.80 4.60 2.80

3.842 3.515 6.368 4.002 6.368 4.00 -10.5 -30.7 4.68 9.889 11.99 10.54 8.846 5.51 3.51

0.989 0.614 5.646 2.384 5.646 2.38 -16.4 -41.6 4.84 10.77 13.90 16.14 9.311 4.50 0.61

-0.55 -0.75 4.754 1.220 4.754 1.22 -15.2 -36.1 5.62 8.545 11.46 14.82 8.899 3.93 0.55

-3.93 -4.02 -0.82 -2.98 -0.82 -2.9 -12.0 -23.6 0.05 2.311 2.363 4.191 1.475 -1.40 0.05

-1.85 -2.57 -0.69 -0.35 -0.69 -0.3 -12.9 -23.1 -0.59 -1.17 -1.76 -0.25 -2.31 -2.24 0.25

-2.00 -2.63 -3.72 -3.03 -3.72 -3.0 -18.5 -32.3 -3.79 -4.71 -5.62 -4.00 -6.60 -4.04 2.00

1.208 1.511 -2.50 -1.88 -2.50 -1.8 -20.2 -34.9 -1.92 -2.58 -3.21 -1.17 -4.45 -1.37 1.17

-3.44 -2.34 -6.85 -5.32 -6.85 -5.3 -29.6 -49.4 -6.69 -7.92 -8.94 -6.18 -10.3 -6.66 2.34

-0.17 0.630 -3.50 -4.45 -3.50 -4.4 -32.1 -60.6 -4.10 -5.70 -7.42 -3.78 -8.77 -4.88 0.17

0.270 1.182 -12.1 -4.55 -12.1 -4.5 -33.0 -53.2 -7.85 -7.41 -9.82 -12.7 -11.8 -5.44 0.27

5.886 6.720 0.189 2.279 0.189 2.27 -9.58 -20.4 1.77 2.923 3.052 0.439 1.300 2.75 0.18

2.471 3.608 3.308 1.162 3.308 1.16 -13.4 -32.6 1.53 6.802 8.479 5.692 5.554 2.36 1.16

2.920 3.243 7.879 4.327 7.879 4.32 -18.7 -47.3 7.09 13.19 17.58 18.73 12.34 7.24 2.92

2.757 2.736 8.930 5.127 8.930 5.12 -16.6 -42.9 8.66 13.11 18.43 22.72 14.08 8.44 2.73

-2.52 -2.72 4.374 -0.47 4.374 -0.4 -18.6 -42.1 5.85 9.596 10.63 14.39 8.851 2.67 0.47

-5.38 -5.88 -4.14 -5.59 -4.14 -5.5 -12.3 -21.6 -3.30 -1.19 -1.56 -0.35 -2.75 -3.64 0.35

-3.91 -5.93 -2.84 -3.05 -2.84 -3.0 -24.3 -43.6 -2.33 -3.41 -4.34 -1.67 -5.51 -3.44 1.67

-8.45 -8.47 -9.74 -6.34 -9.74 -6.3 -52.2 -90.4 -10.3 -12.5 -14.3 -9.05 -16.1 -11.2 6.34

1.047 1.290 -10.5 -6.26 -10.5 -6.2 -64.6 -110. -8.89 -12.0 -15.0 -9.78 -18.5 -8.06 1.04

Table 2. Percentage Error in Hourly Load Forecasting by Proposed RNN Model

A.*R
and-
(A/2)
9-2-1

A.*R
and-
(A/2)
9-3-1

2.*R
and-

1
9-2-1

2.*R
and-

1
9-3-1

Ran
ds

9-2-1

Ran
ds

9-3-
1

Rand
nr

9-2-1

Rand
nr

9-3-1

Ran
dnc

9-2-1

Ran
dnc

9-3-1

Ran
d

9-2-1

Ran
d

9-3-1

NW
9-2-1

NW
9-3-1

62.22 68.77 106.6 72.92 106.6 72.9
4.37E
+02

8.57E
+02

96.8 147.3 181.8 168.3 167.7 98.3
Total

Abs. %
Error

6 4 1 3 1 2 1 0 2 0 0 4 0 0
No. of

Min. %
Error

10 9 11 12 11 12 21 21 10 10 10 10 10 11 Negative
% Error

12 11 5 9 5 8 1 0 7 5 3 5 4 6
Error

less than
3%

2.963 3.275 5.079 3.472 5.07 3.47 20.81 40.82 4.61 7.01 8.65 8.01 7.98 4.68
Avg.

hourly
% Error

10.88 11.06 10.5 10.51 10.4 11.1 10.83 10.41 11.9 10.7 11.0 11.0 10.4 10.8
Computa

tion
Time

MAPE: 4.5250 %
MAPE: 2.9633 %

Table 3. Performance Index Comparison of Proposed RNN Model

The prediction performance of BP-
MLPNN, GA-MLPNN, PSO-MLPNN,
ANFIS and the proposed RNN over a
period of 21 hours is presented in figure 3.
through figure 7. From figure 7. it is clear
that the proposed network is able to track
and predict the variation of load.

In Table.2, the prediction
performance of the proposed RNN is
tabulated taking into consideration type of
initialization method & number of hidden
neurons. The first row gives the formula /
standard Matlab functions used to initialize
the parameters (weight & bias) of neurons.
The value of A is taken as 0.72, Rand,
Randnr, Rands, Randnc are standard
Matlab random value generation functions.
NW is Nguyen Widrow method of
parameter initialization. The network is
trained and tested with same set of
historical data, so that we can select the
parameter initialization method which will
give the least Mean Average Percentage
Error (MAPE). After the network is
trained, it is subjected to testing data for
prediction of next 21 (twenty one) hours
load. The % prediction errors for each type
of initialization method are delineated
column wise under the respective
initialization methods.

In Table. 3, first row signifies
summation of absolute percentage errors,
second row gives number of minimum
percentage errors provided by each method
for a given testing data set, third row gives
the number of negative % errors, fourth
row gives the MAPE & fifth row gives the
computation time required for testing for
respective parameter initialization method.

V. CONCLUSION

The performance of the proposed
RNN is compared with several other

computational intelligence methods like
multi layer perceptron neural network
(MLPNN), MLPNN trained by GA,
MLPNN trained by PSO, ANFIS to show
the superiority in terms of accuracy of
prediction. It has been shown that the
proposed RNN achieves higher accuracy
with less number of neurons.

The main advantages of the
proposed RNN are as follows:

The temporal relations are
provided by neurons, not be simple
feedback paths, which enhance the
nonlinear mapping capability.

 It has a flexible feedback structure,
so we can use different types of activation
functions and different number of neurons
on case to case basis for increasing
accuracy.

VI. REFERENCES

[1] D.P.Mandic, J.A.Chambers, Recurrent
Neural networks for Prediction. New
York: Jhon Wiley & Sons, 2001.
[2] J. J. Hopfield, “Neural networks and
physical systems with emergent collective
computational abilities,” Proc. Nat. Acad.
Sci., vol. 79, pp. 2554–2558, 1982.
[3] J. L. Elman, “Finding structures in
time,” Cogn. Sci., vol. 14, pp. 179–211,
1990.
[4] M. I. Jordan, “Supervised learning and
systems with excess degrees of freedom”
COINS, Mass. Inst. Technol., Cambridge,
MA, 1988, Tech. Rep. 88-27.
[5] R. J. Williams and D. Zipser, “A
learning algorithm for continually running
fully recurrent neural networks,” Neural
Comput., vol. 1, pp. 270–280, 1989.
[6] A. C. Tsoi and A. D. Back, “Locally
recurrent globally feedforward networks: a
critical reviewof architectures,” IEEE
Trans. Neural Netw., vol. 5, no. 2, pp.
229–239, Mar. 1994.
[7] S. A. Billings and C. F. Fung,
“Recurrent radial basis function networks

for adaptive noise cancellation,” Neural
Netw., vol. 8, no. 2, pp. 273–290, 1995.
[8] S. Santini, A. D. Bimbo, and R. Jain,
“Block-structured recurrent neural
networks,” Neural Netw., vol. 8, no. 1, pp.
135–147, 1995.

[9] D. Nguyen and B. Widrow,
“Improving the learning speed of 2-layer
neural networks by choosing initial values
of the adaptive weights,” in Proc. Int.
Joint Conf. Neural Netw., Jul. 1990, vol. 3,
pp. 21–26.

