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The current work is an extension of the authors’ earlier work and presents a life prediction
methodology under interspersed mode-I and mixed-mode (I and II) overloads. The impor-
tant controlling parameter in the model is ‘specific growth rate’ (m). It depends on two
crack driving forces i.e. stress intensity factor range and maximum stress intensity factor
as well as material parameters i.e. fracture toughness, Young’s modulus, and yield stress.
The dependence of ‘m’ on these parameters is correlated through a dimensionless param-
eter ‘l’. It is observed that the present model predicts the end life of post-overload period
well in case of 7020 T7 and 2024 T3 Al-alloys.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Despite advances made in the field of engineering design and testing, failure due to fatigue is a common phenomenon and
estimation of fatigue life of a component is still in the developing stage. All structures contain flaws either from metallurgical
defects or from the damage induced during service. These flaws or cracks grow from an initial size to a critical size leading to
catastrophic failure of the structures when subjected to fatigue loading. Design of modern sophisticated equipment against
fatigue demands both safety and economy. Hence, there is the need for an accurate life prediction methodology so that a
component may be replaced before a catastrophic failure occurs.

Although Paris [1] law is the most widely used crack growth law, the first work is attributed to A K Head, an Australian
Defence Science and Technology Organization (DSTO) researcher [2]. Later, using Head’s observations, Frost and Dugdale
[3,4] reported that fatigue crack could grow exponentially leading to a simple log–linear relationship given by:

LnðaÞ ¼ -N þ Lnða0Þ or a ¼ a0e-N ð1Þ
can be written as:
da
dN
¼ -a ð2Þ
where N is the fatigue life, - is a parameter that depends on the geometry, material and load scenario, a is the crack length
and a0 is the initial flaw size. For constant amplitude loading they found that - could be expressed as:
- ¼ f ðrÞ ¼ wðDrÞ3 ð3Þ
. All rights reserved.
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Nomenclature

a crack length (mm) measured from the edge of the plate
a0 initial crack length (mm)
ai crack length corresponding to the ‘ith’ step (mm)
ai crack length corresponding to the ‘jth’ step (mm)
af final crack length (mm)
ath an intrinsic crack length related to the threshold stress intensity factor
aol crack length at overload (mm)
a* constant in the generalized Frost and Dugdale law
ad retarded crack length (mm)

aP
d retarded (predicted) crack length (mm)

aE
d retarded (experimental) crack length (mm)

A0, B0, C0, D0 curve fitting constants in the Exponential Model
B plate thickness (mm)
COD crack opening displacement
C1; ~C fatigue crack growth constants in the generalized Frost and Dugdale law
da/dN crack growth rate (mm/cycle)
E modulus of elasticity (MPa)
f(g) geometrical factor
F remotely applied load (N)
DF remotely applied load range (N)
Fmax maximum load of constant amplitude load cycle (N)
Fmin minimum load of constant amplitude load cycle (N)
K stress intensity factor ðMPa

ffiffiffiffiffi
m
p
Þ

KI mode-I stress intensity factor ðMPa
ffiffiffiffiffi
m
p
Þ

KII mode-II stress intensity factor ðMPa
ffiffiffiffiffi
m
p
Þ

KC plane stress fracture toughness ðMPa
ffiffiffiffiffi
m
p
Þ

(KI)C plane stress fracture toughness in mode-I ðMPa
ffiffiffiffiffi
m
p
Þ

(KII)C plane stress fracture toughness in mode-II ðMPa
ffiffiffiffiffi
m
p
Þ

KIIC plane strain fracture toughness ðMPa
ffiffiffiffiffi
m
p
Þ

Kmax maximum stress intensity factor ðMPa
ffiffiffiffiffi
m
p
Þ

Kmax,appl maximum applied stress intensity factor ðMPa
ffiffiffiffiffi
m
p
Þ

Kmax,tot total maximum applied stress intensity factor ðMPa
ffiffiffiffiffi
m
p
Þ

KB
max maximum (base line) stress intensity factor ðMPa

ffiffiffiffiffi
m
p
Þ

Kol
eq equivalent stress intensity factor at overload ðMPa

ffiffiffiffiffi
m
p
Þ

Kol
I mode-I stress intensity factor at overload ðMPa

ffiffiffiffiffi
m
p
Þ

Kol
II mode-II stress intensity factor at overload ðMPa

ffiffiffiffiffi
m
p
Þ

DK stress intensity factor range ðMPa
ffiffiffiffiffi
m
p
Þ

DKeq equivalent stress intensity factor (crack driving force) in Frost and Dugdale law ðMPa
ffiffiffiffiffi
m
p
Þ

DK+ tensile part of the stress intensity factor range ðMPa
ffiffiffiffiffi
m
p
Þ

KII
K IþK II

mode-mixity
l dimensionless factor in the ‘Exponential Model’ formulation
m specific growth rate
mij specific growth rate corresponding to the interval i–j
N number of cycles or fatigue life
Ni number of cycles corresponding to the ‘ith’ step
Nj number of cycles corresponding to the ‘jth’ step
Nf final number of cycles
Nd number of delay cycles

NP
d number of delay cycles (predicted)

NE
d number of delay cycles (experimental)

NP
f final number of cycles (predicted)

NE
f final number of cycles (experimental)

q driving force constant
Rol overload ratio
t time
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where w is a constant. Several researchers also observed this exponential nature of growth [5–10] of fatigue cracks by con-
ducting a wide range of full-scale fatigue tests and coupon tests under service spectra. Barter et al. [11] verified the appli-
cability of Eq. (1) for various materials and specimen configurations loaded by both constant amplitude and complex variable

w plate width (mm)
- exponent in the Frost and Dugdale crack growth law
X1. . .X4,Y1. . .Y4 and Z1. . .Z4 curve fitting constants in the ‘Exponential Model’
m Poisson’s ratio
a1 ratio of mode-I and mode-II plane stress fracture toughness
b loading angle
bIC fracture toughness correlation factor
g generalized Frost and Dugdale fatigue crack growth equation exponent
W constant in the Frost and Dugdale law
u fatigue crack growth equation exponent
rys yield point stress (MPa)
rut ultimate stress (MPa)
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amplitude spectra. The relationship between crack growth rate and crack length (Eq. (2)) not only holds good for metallic
materials but also for composite repairs as observed by Jones et al. [12].

This observation of crack growth led to the formulation of the generalized form of Frost and Dugdale law [13–15]:

da
dN
¼ C1ða=a�Þð1�g=2ÞðDKeqÞg ¼ ~Cað1�g=2ÞðDKeqÞg ð4Þ

where DKeq is the crack driving force, C1, a* and g are constants, and ~C ¼ C1=a�ð1�g=2Þ.
Further, according to two parameter crack driving force model, also known as Unified Approach [16–21], the crack growth
law ta

crack

alloy
In r

where
kes the form:h i/
da
dN
¼ C ðDKþÞð1�qÞKq

max;appl ð5Þ

where DK+ corresponds to the tensile part of the load cycle, q is the driving force constant and u is the fatigue crack growth
equation exponent. Later Jones et al. [22] linked the generalized Frost and Dugdale law (Eq. (4)) to the two parameter fatigue
growth model (Eq. (5)) and formulated a new functional form of the crack growth rate law:� � � �
da
dN
¼ ða=athÞ1�/=2C1 DKð1�qÞ

tot ðKmax;totÞ
/
¼ ðaÞ1�/=2 ~C DKð1�qÞ

tot ðKmax;totÞq
/

ð6Þ

where ~C ¼ C1=a1�/=2
th . They used the above formulation to predict the crack growth for a simple laboratory test on D16 Al-
specimens as well as for two full scale air-craft fatigue tests (F111 and FIA-18).
eal situations, a structure or a component may be subjected to mixed-mode overload due to either change in the loading

ion during service or the presence of randomly oriented defects. Several researchers [23,24] have conducted fatigue tests
direct
to study the effect of mixed-mode (I and II) overloads on subsequent mode-I fatigue crack growth. But from life prediction
point of view, no model is available, to the knowledge of the authors, so far as mixed-mode overloads are concerned. The Expo-
nential Model, proposed earlier by the authors [25] to evaluate the various retardation parameters, supports the principle of
conventional Frost and Dugdale’s crack growth law [3,4] as well as the law (Eq. (6)) formulated by Jones et al. [22]. However,
the exponent ‘m’ (specific growth rate) in the proposed exponential model has been treated in a different manner supporting
the ‘Unified Approach’ principle. In the present investigation, the authors have tentatively extended the previously proposed
‘Exponential Model’ for prediction of fatigue life under interspersed mode-I and mixed-mode (I and II) overload. The model has
been tested on both 7020 T7 and 2024 T3 Al-alloys and covers both the regimes-II and -III of fatigue crack growth rate curve.

2. Model development

2.1. Description of the previous exponential model [25]

Prediction of fatigue life in case of mixed-mode overload is more complex than that of mode-I overload because of the
involvement of different angles of overloading. As a first step, an attempt was made to predict the a–N curve of post-overload
portion up to the end of retardation. This was done using different overload ratios (Rol = 2.5, 2.6, 2.7 and 2.8) on 7020 T7 Al
alloy specimens.

The crack growth equation was written in the following form:

a ¼ a0emN ð7Þ

Or; m ¼
ln a

a0

� �
N

ð8Þ
a is crack length in general, a0 is the initial crack length, N is the number of cycles and m is the specific growth rate.



The specific growth rate m was correlated with a parameter ‘l’ to take into account the various crack driving parameters
such as Kmax, DK, and Kol

eq as well as the material properties E and rys by a linear curve-fit for the retardation portion of the
post-overload period as described below:

0 0
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m ¼ A lþ B ð9Þ
where

l ¼
Kol

eq

" #
�

Kol
eq

" #
� E
� �

ð10Þ
KIþKII
b

culate

2.2. P

(1)

erloa

90�
72�
54�
36�
18�
0�

Table 2
Curve fi

Overloa

90�
72�
54�
36�
18�
0�
Kmax DK rys
Since the constants A0 and B0 were different for different angles of overload, they were again correlated with mode mixity
KII
 y polynomial curve fitting. By putting the values of the above constants in Eq. (8), the predicted values of m were cal-

d for the loading angle 54� corresponding to respective crack lengths. The predicted number of cycles (fatigue life) was
ated as follows:
calcul

N ¼
ln a

a0

� �
m

ð11Þ
roposed modifications – an extension of the earlier model

mN
Although the Exponential Model of the form a ¼ a0e can be effectively used to determine the retardation parameters

ad and Nd, the major inconsistency arises while calculating the specific growth rate m. It is known that fatigue life is
sensitive to initial crack length [26]. However, calculation of m in the region a0–af will only give an average value of m
in that region as observed in the earlier model. As the value of m changes with each increment of crack length, it will
be more appropriate to calculate specific growth rate, m, at each crack length increments considering the present crack
length as the initial one for the successive step. Eqs. (7), (8) are, therefore, modified in the following forms:

aj ¼ aiemijðNj�NiÞ ð12Þ

Or; mij ¼
ln aj

ai

� �
ðNj � NiÞ

ð13Þ
where ai and aj are crack lengths in ith step and jth step in ‘mm’, respectively, Ni and Nj number of cycles in ith step
and jth step, respectively, mij is the specific growth rate in the interval i–j, i is the number of experimental steps and
j = i + 1.
(2) The power term in the exponential equation is a dimensionless quantity and hence l should be dimensionless. As such

the terms Kol
eq

DK

� �
, Kol

eq
Kmax

� �
and E

rys

� �
in the expression of ‘l’ are acceptable from the dimensional analysis point of view.

However, it will be more appropriate if DK, Kmax, and rys are used in the numerators as these parameters control
the growth rate directly though this may not give a straight line fit between m and l.

(3) A single tensile overload retards the crack growth rate, whether the overload is in mode-I or mixed-mode, and hence
increases the residual life. In the earlier reported work [25], modeling was done for the post-overload period to cal-
culate only the retardation parameters. Since the ultimate aim is to estimate the residual life of the component, Kol

eq

Table 1
Curve-fitting constants of 7020 T7 alloy.
d angle (b) Mode-mixity KII
K IþKII

� �
A0 � 10�6 B0 � 10�6 C0 � 10�6 D0 � 10�6
Ov
1 �539649 145310 �10994.00 259.79
0.755 �502381 134367 �9829.70 220.57
0.579 �409896 107374 �7065.30 130.42
0.421 �398478 104031 �6853.30 126.11
0.245 �375919 98609 �6562.20 122.74
0 �352141 91313 �5839.90 97.56

tting constants of 2024 T3 alloy.

d angle (b) Mode-mixity KII
K IþKII

� �
A0 � 10�6 B0 � 10�6 C0 � 10�6 D0 � 10�6

1 �317743 130554 �14954.0 526.86
0.755 �161221 66285 �7576.1 270.48
0.579 �138722 55634 �5523.5 153.62
0.421 �123760 49826 �5091.6 148.40
0.245 �131140 53025 �5560.5 170.22
0 �184424 75502 �8449.2 284.73



in the ‘l’ parameter is replaced by KC (to take care of regime-III of the fatigue crack growth curve) and the modified
equation is written as:
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l ¼ DK
KC

Kmax

KC

rys

E

� � 1=4

ð14Þ

� �� �� �
Table 3
Chemic

Mats.

7020 T
2024 T

Table 4
Mechan

Materia

7020 T

2024 T
al composition of the two alloys.

Al Cu Mg Mn Fe Si Zn Cr Others

7 Main constituent 0.05 1.2 0.43 0.37 0.22 4.6 – –
3 90.7–94.7 3.8–4.9 1.2–1.8 0.3–0.9 0.5 0.5 0.25 0.1 0.15

Fig. 1. Single Edge Notch Tension (SENT) Specimen geometry.

ical properties of the two alloys.

l Tensile strength
(rut) MPa

Yield strength
(rys) MPa

Young’s
modulus (E)
MPa

Poisson’s
ratio (m)

Plane strain fracture
toughness (KIC) MPa

p
m

Plane stress fracture
toughness (KC) MPa

p
m

Elongation

7 352.14 314.7 70,000 0.33 50.12 236.8 21.54% in
40 mm

3 469 324 73,100 0.33 37.0 95.31 19% in
12.7 mm



2.3. Procedural steps for the extended model

In this work single overload with overloading ratio Rol = 2.5 is considered for all loading angles (0�, 18�, 36�, 54�, 72� and

Table 5
Load scenarios of the test on two materials.

Material Fmax (KN) Fmin (KN) Rol ai (mm) aol (mm) af (mm)

7020 T7 8.429 0.843 2.5 17.75 19.10 31.2
2024 T3 7.197 0.720 2.5 17.75 20.40 32.40

J.R. Mohanty et al. / Engineering Fracture Mechanics 76 (2009) 454–468 459
90�) tested on aluminum alloys 7020 T7 and 2024 T3 specimens. The procedural steps of the extended model are as follows:

(1) The value of specific growth rate, m, for each step, is calculated from experimental a–N data using Eq. (13) and sub-
sequently refined by a polynomial curve fit with the calculated ‘m’ and ‘a’ values.

(2) The refined ‘m’ values obtained from step 1 are correlated with the parameter ‘l’ to take into account the two crack
driving parameters DK and Kmax as per ‘unified approach’ [16–21] as well as material parameters ‘KC’, ‘E’, and ‘rys’ rep-
resented by the following equation

l ¼ DK
KC

� �
Kmax

KC

� �
rys

E

� �� �1
4

ð15Þ

The values of plane stress fracture toughness (K ) are calculated from plane strain fracture toughness values (K ) by an

empir

consta
C IC

ical relation proposed by Irwin [27] as presented in following equation

K2
C ¼ K2

ICð1þ 1:4b2
ICÞ ð16Þ
where � �2
bIC ¼
1
B

K IC

r
ð17Þ
ys
The different ‘m’ and ‘l’ values are fitted by a 3rd degree polynomial for both the materials separately as given below:
m ¼ A0l3 þ B0l2 þ C 0lþ D0 ð18Þ
where A0, B0, C0 and D0 are curve fitting constants. All the values of above constants are listed in Tables 1 and 2, respectively.
The values of above constants differ since the amount of retardation varies with the angles of overloading. Therefore, each
nt of different overload angles (except 54� angle) are correlated with mode mixity, KII
KIþKII

by a 2nd degree polynomial

curve fit so as to give the following sets of equations:
17.75

19.75

21.75

23.75

25.75

27.75

29.75

2.50E+04 4.50E+04 6.50E+04 8.50E+04 1.05E+05 1.25E+05 1.45E+05

C
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 le
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th

 (a
),

 m
m

Base line

90-deg.

72-deg.

54-deg.

36-deg.

18-deg.

0-deg.

No. of cycles (N)

Fig. 2. Comparison of a–N curves for different overload angles (7020 T7 alloy).



A0 ¼ X1
KII

K I þ K II

� �2

þ Y1
K II

K I þ K II

� �
þ Z1 ð19Þ

0 K II
� �2 K II

� �

where
The g

17.75

19.75

21.75

23.75

25.75

27.75

29.75

31.75

7.00E+04 9.00E+04 1.10E+05 1.30E+05 1.50E+05 1.70E+05 1.90E+05 2.10E+05 2.30E+05

No. of cycles (N)

C
ra

ck
 le

ng
th

 (a
),

 m
m

Base line

90-deg.

72-deg.

54-deg.

36-deg.

18-deg.

0-deg.

Fig. 3. Comparison of a–N curves for different overload angles (2024 T3 alloy).
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B ¼ X2 K I þ K II
þ Y2 K I þ K II

þ Z2 ð20Þ

C0 ¼ X3
K II

K I þ K II

� �2

þ Y3
K II

K I þ K II

� �
þ Z3 ð21Þ

D0 ¼ X4
K II

K I þ K II

� �2

þ Y4
K II

K I þ K II

� �
þ Z4 ð22Þ

X1, X2, X3, X4, Y1, Y2, Y3, Y4 are another set of curve fitting constants relating A0, B0, C0 and D0 with mode mixity ð KII
KIþKII
Þ.

eneralized equation for specific growth rate (Eq. (18)) now becomes:
17.75

19.75

21.75

23.75

25.75
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2.57E+04 3.57E+04 4.57E+04 5.57E+04 6.57E+04 7.57E+04

No. of cycles (N)

C
ra

ck
 le

ng
th

 (a
),

 m
m

Base line

Predicted

Experimental

Experimental

Predicted

Base line

Fig. 4. Comparison of predicted and experimental a–N curves for overload angle 54� (7020 T7 alloy).



m ¼ X1
KII

KI þ KII

� �2

þ Y1
KII

KI þ KII

� �
þ Z1

( )
l3 þ X2

KII

KI þ KII

� �2

þ Y2
KII

KI þ KII

� �
þ Z2

( )
l2

K
� �2 K

� �( )
K

� �2 K
� �( )

3. Th

3. Tak
54
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þ X3
II

KI þ KII
þ Y3

II

KI þ KII
þ Z3 lþ X4

II

KI þ KII
þ Y4

II

KI þ KII
þ Z4 ð23Þ

e predicted number of cycle is calculated using the equation:

ln aj
� �
Nj ¼
ai

mij
þ Ni ð24Þ
ing the values of crack lengths and predicted number of cycles, the predicted a–N curves are plotted (overload angle
�) for both the materials.
4. The crack growth rates, da/dN, are determined directly from the predicted a–N curves obtained above.
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Fig. 6. Variation of specific growth rate (m) with crack length (a) for overload angle 54� (7020 T7 alloy).
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Fig. 5. Comparison of predicted and experimental a–N curves for overload angle 54� (2024 T3 alloy).



5. The values of the stress intensity factor range, DK [28] are calculated from the following equation:
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wB

where
DK ¼ fðgÞDF
ffiffiffiffiffiffi
pa
p

ð25Þ
Th
fðgÞ ¼ 1:12� 0:231ða=wÞ þ 10:55ða=wÞ2 � 21:72ða=wÞ3 þ 30:39ða=wÞ4 ð26Þ
3. Experimental procedure
e present investigation was performed on two aluminum alloys (7020 and 2024). The 7020 Al-alloy suitable for ground

transport system was procured from Hindalco, Renukoot, India in the as-fabricated condition, while 2024 Al-alloy was pro-
cured from Virat Aluminum, Mumbai, India in T3 heat-treated condition. The 7020 Al-alloy was subjected to T7 heat-treat-
ment to obtain optimum mechanical properties. The chemical composition and the mechanical properties of the alloys are
given in Tables 3 and 4 respectively.
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Fig. 7. Variation of specific growth rate (m) with crack length (a) for overload angle 54� (2024 T3 alloy).
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Fig. 8. Variation of specific growth rate (m) with number of cycles (N) for overload angle 54� (7020 T7 alloy).



All the fatigue crack growth tests were conducted in air at room temperature using single-edge notch, SEN specimens
made in the longitudinal transverse (LT) direction from the plate. The detail geometry of the specimens is given in Fig. 1.
The experiments were performed on a servo-hydraulic Instron-8502 machine having a load capacity of 250 kN, interfaced
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to a computer for machine control and data acquisition. The test specimens were fatigue pre-cracked under mode-I loading
to an a/w ratio of 0.3 and were subjected to constant load test (i.e. progressive increase in DK with crack extension) main-
taining a load ratio of 0.1. The sinusoidal loads were applied at a frequency of 6 Hz. The crack growth was monitored with the
help of a COD gauge mounted on the face of the machined notch. The fatigue crack was allowed to grow up to an a/w ratio of
0.4 and subsequently subjected to single overload spike at a loading rate of 8 kN/min. The different load scenarios of both the
materials are presented in Table 5.

The overloading was done by using a mixed-mode loading device similar to the one used by Richard [29] and described in
the authors’ earlier work [25]. The following equations are used to determine stress intensity factors KI and KII for different
angles of overload application
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wB

f(g) is given in Eq. (26).
e specimens were subjected to mode I, mode II, and mixed-mode overloads at different loading angles, b (= 18�, 36�, 54�
2�) at an overloading ratio of 2.5. Overloading ratio is defined as
Rol ¼
Kol

eq

KB
max

ð29Þ

where KB is the maximum stress intensity factor for base line test. The equivalent stress intensity factors ðKol Þ are calcu-
max eq

according to the following equation [23]:
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where a1 = (KIC/KIIC) = 0.95 according to strain energy density theory [30] and Kol
I and Kol

II are the of stress intensity factors of
mode

Fig. 1
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s I and II during the overload respectively. Then the fatigue test was continued in mode I.
4. Validation of the model with experimental results and discussion

4.1. Model validation

It has been verified by Sander and Richard [23] that a pure Mode-I overload (b = 0�) leads to maximum retardation, while
Mode-II overload (b = 90�) has least effect on retardation. In the intermediate ranges (b = 18�, 36�, 54�, and 72�), the single
tensile overload has mixed effect (Figs. 2 and 3) due to the presence of shear stress component. The proposed modified mod-
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Fig. 13. Comparison of predicted and experimentally obtained delay cycle (Nd) for overload angle 54� (2024 T3 alloy).
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el has been tested for overload angle of 54� for both materials and the predicted results are compared with the experimental
data (Figs. 4–15). Figs. 4 and 5 show the experimental and predicted a–N curves for overload angle 54� and Figs. 6–9 show
the variation of specific growth rate (m) with crack length (a) and number of cycles (N) for both alloys. The predicted results
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and percent deviations of retarded crack length (ad) and delay cycle (Nd) from experimental values are presented in Table 6
and illustrated in Figs. 10–13 respectively for both materials. The deviations of predicted ad values for 7020 T7 and 2024 T3
alloys are �0.802% and �1.13%, respectively. Similarly the deviations of predicted Nd values are �1.195% and �2.273%,
respectively. The deviations of predicted number of cycles NP

f

� �
from experimental results are �0.238% and �0.217% for

7020 T7 and 2024 T3 alloys, respectively. Figs. 14 and 15 compare the crack growth rate (da/dN) with the stress intensity
factor range (DK).

4.2. Discussion

The experimental test results in fatigue are noisy and random in nature, although repeated trends can be observed. A good
prediction of the fatigue crack growth behavior can be obtained by a stochastic rather than a deterministic differential equa-
tion model [31,32]. However, the very purpose of a scientific model is that it must be simple and fast to apply with some
physical meaning during its solution process. In conventional differential equation model of Paris [1] there is a physical
inconsistency when the constants of the crack growth rate equation are randomized as per dimensional analysis point of
view [33]. In the differential equation of the proposed Exponential Model, this type of inconsistency does not arise as the
specific growth rate ‘m’ is a dimensionless parameter. Further, the modified form of the extended Exponential Model min-
imizes the randomness of the fatigue test data, thereby making the model simpler and faster to apply by increasing its pre-
diction capability.

Spagnoli [34] analyzed the Paris law on the basis of both similarity methods and fractal concepts and presented some
experimental evidence of its breakdown of similitude concept. He observed that the complete self-similarity (corresponding
to no crack-size dependence of da/dN-DK relationship) of Paris law is only possible for larger crack size. Whenever the crack
size is small (for micron-sized crack and also in case of concrete or other heterogeneous materials), the crack growth rate
depends on crack size leading to incomplete self-similarity (non-self similarity) of Paris law. Based on these facts, he pro-
posed a crack-size dependent Paris law by strengthening the phenomenon of incomplete self-similarity in the fatigue crack
growth process. The differential equation of the Exponential Model follows the form proposed by Spagnoli [34] for non-self
similar growth and for the growth of a fractal crack emphasizing the fact that crack growth rate is crack size dependent as
per Frost and Dugdale law [3,4].
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Fig. 15. Comparison of predicted and experimental crack growth rate (da/dN) with stress intensity range (DK) for overload angle 54� (2024 T3 alloy).

Table 6
Experimental results of the tested specimens.

Material aP
d mm aE

d mm % error in aP
d NP

d Kcycle NE
d Kcycle % error in NP

d NP
f Kcycle NE

f Kcycle % error in NP
f

7020 T7 1.978 1.994 �0.802 21.49 21.750 �1.195 74.600 74.778 �0.238
2024 T3 2.274 2.300 �1.13 19.564 20.019 �2.273 118.218 118.475 �0.217



Furthermore, most of the fatigue crack growth models are in the form of differential equations relating crack growth rate
and stress intensity factor raised to a power of approximately 3. Hence, any inaccuracy in the value of stress intensity factor
is magnified in life calculation. The discrepancies may be even more dramatic for initial cracks loaded near the fatigue

J.R. Mohanty et al. / Engineering Fracture Mechanics 76 (2009) 454–468 467
threshold limit. The involvement of robust numerical integration scheme also makes the life calculation more complicated
particularly for variable amplitude loading [35]. But, in the proposed Exponential Model any inaccuracy in the values of crack
driving forces does not significantly alter the fatigue life as the specific growth rate ‘m’ is related to different crack driving
forces raised to a power (highest) of 0.75. However, the only demerit in the model is the determination of various curve fit-
ting constants which requires much effort.

5. Conclusion

(1) ‘Extended Exponential Model’ of the form aj ¼ aiemijðNj�NiÞ can be effectively used to determine the retardation param-
eters ad and Nd as well as the fatigue life Nf for specimens subjected to mixed-mode (I and II) overload.

(2) The intrinsic growth rate m is a function of two crack driving forces, DK, Kmax, mode mixity KII
KIþKII

and material param-

eters, E, rys, KC, and can be represented by an equation of the form m ¼ A0l3 þ B0l2 þ C0lþ D0 where

l ¼ DK
KC

� �
Kmax

KC

� �
rys

E

	 
h i1
4

and A0, B0, C0 and D0 are functions of KII
KIþKII

.

(3) The differential form of the proposed model conforms the dimensional analysis concept and indicates a dependence of
‘da/dN’ on ‘a’ and hence, an existence of incomplete self-similarity in the fatigue crack growth rate phenomenon.

(4) The percentage deviations of retardation parameters, (ad and Nd) and fatigue life (Nf) predicted by the above model
from the experimental data for 7020 T7 and 2024 T3 Al-alloys are found to be within reasonable accuracy.
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