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Abstract: This paper proposes a new methodology for control-
ling multitap capacitors in a power system using a three layer
feedforward neural network. The neural network, in the
proposed scheme is separately trained with two algorithms
namely backpropagation and combined backpropagation-
Cauchy’s learning algorithm. Studies on 30 bus IEEE test sys-
tem are carried out and quite satisfactory results are obtained.
The inputs to the net are the real power, reactive power and volt-
age magnitude at a few selected buses and the network’s out-
puts are the values of capacitive var injection. Performance
comparison is made between two algorithms and the com-
bined backpropagation-Cauchy’s algorithm is found to be bet-
ter than the other.

N

INTRODUCTION

Conventionally var planning problems in a transmission or
distribution system is handled by trial and error approaches
utilizing a power flow program to keep the voltage profile within
the acceptable limits and to reduce losses at different load
profiles. Early works on var planning focussed on introducing a
optimization technique with suitable objective function. Linear
programming, nonlinear programming and quadratic program-
ming have been used to optimize the objective function. An ac-
curate optimal capacitor in real-time can be obtained by
modifying the algorithm of an optimal capacitor design keeping
in mind that the conttol part of the capacitors are already avail-
able up to their maximum ratings. The main problems associated
with the conventional approaches are the heavy computational
burden as well as the impracticability to monitor all the loads
continuously. The time consuming optimization process has to
be performed for various load profiles including the similar load
profiles. These difficulties motivated the researchers to develop
a computationally efficient control strategy for optimal
capacitor settings which should be based on limited number of
on-line measurements.

Artificial neural network(ANN), a kind of artificial intel-
ligence, has attracted a widespread interest in the recent times.
This approach can be adapted to recognizing learned patterns
of behaviour in electrical networks where exact functional
relationship are not easily defined. The application of ANN to
Power Systems is still in infant stage. Recently a few of its ap-
plications in Power Systems have been reported in the litera-
tures[1,2,3,4,5]. A neural net was used to associate patterns of
prefault voltage angles and immediate postfault accelerating

.power with critical clearing time for a faulted line[2]. In another
paper(5], a neural network strategy was used to recognize cur-
rent waveforms associated with incipient (high impedance)
faults on distribution feeders. Recently, a two- stage neural net-
work approach is proposed [1] for real time control of multitap
capacitors installed on a distribution system with a non-con-
forming load profile. Neural networks make initial estimates of

* harmonic sources in a power system with nonlinear loads[3].
In this paper, capacitor control is performed using a three layer

feedforward neural network which can learn from patterns en-
countered previously. The inputs to the network are the P, Q
and | V| at preselected buses [6] where capacitors are placed
and the outputs are the corresponding capacitor values at those
buses. Besides these buses, a few more sensitive buses are iden-
tified by carrying out sensitivity analysis and P, Q an | V| values
of those buses are also fed to the net along with the previous in-
puts. The results obtained are compared with the previous one
to show the effect of the additional buses on capacitive vars re-
quired. The network is trained with two different algorithms and
convergence characteristics are compared. The capability of
producing output even with inadequate inputs is verified. A
simulation of the proposed scheme is carried out in Micro-VAX
II and validated on a modified IEEE 30 bus test system(7]. The
load profile is varied from 80% to 110% of their maximum
values.

NEURAL NETWORK & TRAINING

Neurocomputing is a new approach to information process-
ing that does not require algorithm or rule development and that
often significantly reduces the quantity of software. Primary in-
formation processing structure of interest in neurocomputing is
neural network. A neural network is composed of non-linear
computational elements operating in parallel[8]. The process-
ing elements are connected by links with weights that are
selected to produce desired associations. Several types of neural
net models are available for different applications. Updating the
weights in the net is an important attribute, known as learning
or training[9]. Various adaptive algorithms are available for ad-
justing the weights. The net may be single layer or multiple layer.

A typical three layer feedforward network consisting of mul-
tiple non-linear neurons associated with suitable activation
function is shown in fig.1. Each neuron forms the weighted sum
of the inputs and pass it through the non-linear activation func-
tion to produce a output which serves as the input to the next
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Fig. 1
Typical Three Layer Feedforward Neural Net
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layer. The net is trained to minimize the objective function
which is defined as the half of the sum of squares of the differen-
ces between the predicted one and the corresponding desired
output component.

Training Aleorithms:

Training of the network is animportant feature in the
neurocomputing discipline. The net should learn properly
with the requisite training algorithm to achieve efficient
generalization[10,11). Here the algorithms employed
are backpropagation, and combined algorithm.

Badl ion Aleorithm:
Here the algorithm employs the iterative gradient algorithm

to minimize the objective function. The activation function
selected here is the sigmoid logistic function and is given by,

f(x) = A/(1+exp(-(x-8)2) 1
where A = maximum output

x= sum of the weighted inputs

6= threshold

A= scaling factor

The weights are adapted by a recursive algorithm starting at
the output nodes and working back to the hidden layer. The
weights are adjusted by

@

where [W];j (t) is the weight either from hidden node i to out-
put node j or from input node i to output node j at any time t, X;
is either corresponding input to the net or the input to the hid-
denlayer, yis the learning co-efficient, and j is an error term for
node j. If node j is an output node then

[WIii(t+1) = [Wli) + 18 X;

8 =y (1 - WANd) ©)

where dj is the desired output of the node j and y; is the ac-
tual output.

If node j is an internal or hidden node then,

S =X (1-XyA)) & Wik @

where k is over all node to the right of node j.
Combined ba} ion-Cauchv’s Algorit}

The combined algorithm[10] explores the potential features
of two individual algorithms, namely backpropagation and
Cauchy’s. The other aspects like the activation function, the
error signal and the objective function remain the same. In
contrast to the other two, the weights are updated by the
differential weights, partly contributed by the backpropaga-
tion and Partly by Cauchy’s algorithm. The weight at (t + 1)th
time step is

(Wi (t+1) = [Wi(t) + p gaWii(t) +(1-09 j Xilpy

+(1-9)Xe )
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0(= Momentum co-efficient, varies from 0. to 1.0.
3Wij(t) =Previous weight change.
Xc¢= the weight change due to Cauchy’s distribution.

sz: convergence co-efficient, when is 1.0, the weight ad-
justments are due to pure backpropagation and 0.0 the weights
are due to for pure Cauchy’s algorithm.

1 = Weighting factor to control the convergence co- ef-
ficienf when the change of weight is only due toback-
propagation and its value varies from 0.0 to 1.

SIMULATION

A modified IEEE 30-bus system (fig. 2) is chosen to
demonstrate the efficacy of the ANN based scheme for
capacitor control problem. The weight matrix considered for the
first case i.e. for input pattern with twelve data, is Wi2x10 and
Wioxs for the hidden and output layers respectively. In an
analogous manner the weight matrices are [W]2ax18 & [W]18x4
for the second case with 24 inputs. The system parameters as
reported in[7] are modified according to the following[6).

i) Tap-changing capacitor are available at buses 10,19,24 and

ii) All the loads were represented by constant power sinks in
power system simulation.

The load profile is varied from 80% to 110% of the maximum
value. The loads of the system were assumed to change propor-
tionally. The network is exposed to two types of inputs both for
training and prediction. In the first stage P, Q and | V| are only
measured at those buses where capacitors are connected. In the
second case four more sensitive buses are selected and P, Q and
| V| values of those buses are also fed to the net along with the
previous inputs. These additional four buses are selected on the
basis of the closeness to the buses where the capacitors are to
be controlled. This is accomplished by a set of sensitivity factor

Vi Qi and Vi /2P; , where i is any bus sensitive to others. The

Fig. 2, Single Line Diagram of IEEE -30 Bus System.

former may be evaluated from the gradient matrix of the fast
decoupled load flow

[6Q/V] = [B”][6V] 6



By assuming that | V| = 1 for all busbars:

[svAQ) = (B 7
From the [B"]'l matrix the four more sensitive busbars are
chosen. Busbars 18,21,23 & 30 are selected as additonal busbars
to provide input to the network. The input patterns together
with the target patterns are generated using an optimal power
flow for a load profile 80%, 95% & 105% of the maximum
valu€. The minimum voltage is always kept at 0.95 p.u.

RESULTS & DISCUSSION

Results are obtained for different cases and different algo-
rithms. Fig. 3 shows the convergence characteristics of back-
propagation and combined algorithm. The input pattern con-
sists of 12 data and for this particular case the initial convergence
is almost same for both the algorithms. The objective function
for combined algorithm has settled down to_-65dB where as
backpropagation, it is arround -45dB, which clearly differen-
tiates the learning with the two algorithms. Fig. 4 displays the
learning of a particular weight W3 1 of the output layer during
the adaptation process with combined algorithm. The random
fluctuations are-marked due to the weight change contributed
by Cauchy’s algorithm. A particular weight, W22 adapts
smoothly with backpropagation algorithm. The net’s outputs for
both the nets are presented in Table-I. Due to better learning
values determined by the combined algorithm is better than the
backpropagation one. The difference between the results ob-
tained with 12 inputs and 24 inputs is not appreciable, hence
the additional inputs donot have predominant effect on the
results. The results presented in Table - I also shows that the net
produces consistant output even with 20% faults in the network
and inadequate inputs.

CONCLUDING REMARKS

An alternative method is proposed for controlling the
capacitors and hence injecting the vars at a few selected buses.
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Fig. 4

Learning Curve for output layer’s weight using the combined algo-
rithm

The test system considered is IEEE 30 bus system. The buses
are selected by carrying out the sensitivity analysis for the sys-
tem, Besides, a few more sensitive buses are also considered to
determine the effect on the computed values of the vars
predicted earlier. A performance comparison is presented for
the two learning algorithms and the combined al is found to out-
perform the other one. Also appreciable results are obtained
with faulty net and incomplete information thereby exhibiting
the robustness of the scheme. However, the concept of pattern
recognition can be combined to make it more robust and to work
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Fig. 5

Learning Curve for output layer’s weight using backpropagation
algorithm
under a wide variations of loads. The convergence time can be

further improved to design a viable scheme for real time im-
plementation.

ACKNOWLEDGEMENT
The authors express their gratitude to the Ministry



Human Resources Development, New Delhi for providing
funds for carrying out this work.

REFERENCES:

[1] N. Iwan Santose & Owen T. Tan, " Neural Net Based Real-
Time Control of Capacitors installed on Distribution Systems",
IEEE Trans. on Power Delivery, Vol.5, No.1, Jan 1990, pp.
266-272.

[2] D. J. Sobajic and Y. H. Pao, "Artificial Neural Net Based
Dynamic Security Assessment for Electric Power Systems",
IEEE Trans. on Power Systems", Vol.4, Feb 1989, pp. 220-228.

[3] R.K.Hartana & G.G.Richards, "Harmonic Source Monitor-
ing and Identification Using Neural Networks", IEEE Trans.,
Power System Vol.5, No.4, Nov 1990, pp. 1098-1104.

[4] P. K. Dash, P.K.Nanda & S.Saha, "Distribution Automa-
tion Using Artificial Neural Network" Proc. VINational Power
System Conference, Bombay(India), 1990, pp. 6699-704.

{5]1S. Ebran, D. L. Lubkeman and M. White, " A Neural Net-
work Approach to the Detection of Incipient Faults on
Power Distribution Feeders", IEEE PES T&D Conference,
April, 1989, New Orleans, Louisiana, Paper No. 89, TD 377-3.

[6] C. C. Liu & K. Tomsovic, " An Expert System Assisting
Decision-Making of Reactive Power/Voltage Control", IEEE
Trans. on Power Systems, Vol. PWRS-1, No.3, Aug 1986,
pp-195-201.

[7]1B. Stott and O. Alsac, "Optimal Load Flow with Steady-State
Security", Paper T73 448-3, IEEE PES Summer Meeting, Feb,
1973, pp-745-751.

[8] D. E. Rumelhart and J L. McClelland(Eds), "Parallel
Distributive processing” Vol. 1 & 2, MIT Press, 1987.

[9] R. P. Lippmann, " An introduction to computing with
neural nets" IEEE ASSP Magazine, Vol. 4, 1987, pp.4-22.

[10] Phillip D. Wasserman, "Neural Computing, Theory
and Practice", Van Nostrand Reinhold, New York, 1989.

[11] R. Hecht-Nielson, "Neurocomputing", Addison-Wes-
ley Publishing Company, 1990.

Table -I
Table showing the MVARs at busbars 10,19,24 & 29 resprectively.

Load Level Actual 12 inputs 24 points 12 points 12 points
Value Bp Combined Bp 20% Fault with 9
inputs
MVAR MVAR MVAR MVAR MVAR MVAR
. 100% 20.136 19.89 20.01 19.95 19.121 19.23
Load 1.178 0.93 1.01 0.99 0.87 0.91
5.254 6.12 6.02 6.23 5.41 5.29
8.95 8.72 8.87 8.88 8.65 8.50
110% 20.926 20.01 20.27 20.31 19.56 19.45
Load 1.945 1.32 1.29 1.40 1.15 1.21
6.711 6.32 6.01 6.29 5.97 5.85
9.759 9.34 9.47 9.42 8.54 8.67




