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Abstract 

A transient temperature response of three-fluid heat exchangers with finite and large capacitance of 

the separating sheets is investigated numerically for step, ramp, exponential and sinusoidal 

perturbations provided in the central (hot) fluid inlet temperature. The effect of two-dimensional 

longitudinal conduction in the separating sheet and of axial dispersion in the fluids on the transient 

response has been investigated. A comparison of the dynamic behavior of four possible arrangements 

of three-fluid crossflow heat exchangers has also been presented. 

Keywords: axial dispersion, finite difference, longitudinal conduction, three-fluid heat exchanger, 

transient behavior. 

 

Introduction 

 The thermo-hydraulic theory of two fluid exchangers is well developed and available in the 

standard literature [1]. The well-established algorithm for the thermal design of a two fluid heat 

exchanger, however, has no equivalent when the physical situation implies more than one thermal 

communication, such as heat losses to the ambient and the introduction of a third fluid. 

Most heat exchanger applications in the process, power, transportation, thermal energy 

recovery, electronics and the aerospace industries involve transfer of thermal energy between two 

fluids through one thermal communication. However, in recent years some processes with heat 

transfer between three fluids have become important. Three fluid and multi-fluid heat exchangers are 

widely used in cryogenics and different chemical processes, such as air separation, helium separation 

from natural gas, purification and liquefaction of hydrogen, and ammonia gas synthesis. Three fluid 

heat exchangers allow a more compact and economical design also in various other applications.  



 

A wide literature is available on the steady state behavior of three fluid heat exchangers. A 

pioneering effort [2] in analyzing crossflow problem considering it to be a case of heat transfer with 

three heat agents or streams has been given. There was another work by Sorlie [3] among the first 

few, developing a general theory for two temperature effectiveness of three-fluid heat exchangers of 

parallel and counter flow type. Extending the work of Sorlie [3], an analytical relationship was 

developed by Aulds and Barron [4] between the design variables for a general three-fluid heat 

exchanger with three thermal communications. Due to the complexity involved with the addition of 

other operating conditions, a numerical method was used by Barron and Yeh [5] for obtaining the 

temperature distribution and heat exchanger effectiveness of counter-current three-fluid heat 

exchangers that included the effect of longitudinal conduction of both the separating walls. Sekulic 

and Kmecko [6] analyzed the performance of three-fluid parallel stream heat exchangers on the basis 

of effectiveness and compared four possible arrangements of combining the streams with two thermal 

communications. Willis and Chapman [7] made an effort to present the performance of a three-fluid 

crossflow heat exchanger graphically in terms of the temperature effectiveness. An exact analytical 

solution of three-fluid crossflow heat exchangers was first tried by Baclic et al. [8] for unmixed flow 

arrangements using Laplace transforms. Sekulic and Shah [9] gave a very comprehensive review of 

methodologies for analyzing the steady state performance of three fluid heat exchangers. The effect of 

longitudinal conduction in wall on the thermal performance of, three-fluid crossflow heat exchanger 

was numerically calculated by Yuan and Kou [10]. Later, three arrangements of different repetitive 

pattern were analysed [11] in terms of overall heat recovery and uniformity of preheating on three 

fluid streams. The effect of wall longitudinal conduction on thermal performance of three-fluid 

crossflow heat exchangers under steady state was again investigated by Yuan and Kou [12], and the 

three arrangements of the fluid streams were compared. Yuan and Kou [13] further investigated the 

entropy generation in a three fluid crossflow heat exchanger in the presence of wall longitudinal 

conduction using a numerical technique.  



 

Although heat exchangers mostly operate under steady state conditions, steady state analysis 

is not adequate for situations like start-up, shutdown, failure and accidents. The transient response of 

heat exchangers needs to be known for designing control strategies and for taking care of thermal 

stresses in mechanical design. This has motivated for the determination of transient temperature fields 

and a few analytical and semi-analytical works [14, 15] have also been performed on dynamic 

behavior of three-fluid heat exchangers.  

In the present work, the transient temperature response of the three-fluid crossflow heat 

exchanger having large and finite core capacity with all the fluids unmixed is investigated 

numerically for step, ramp, exponential and sinusoidal perturbations provided in the central fluid inlet 

temperature. The four possible arrangements [9] for three-fluid crossflow heat exchangers (figure 1) 

have also been compared.  

Mathematical Modelling 

 A direct-transfer, three-fluid, crossflow plate-fin heat exchanger is shown schematically in 

figure 2(a). For the mathematical analysis the two separating sheets having one fluid on either side are 

taken separately. The following assumptions are made for the analysis. 

1. All the fluids are single phase, unmixed and do not contain any volumetric source of heat 

generation. 

2. The thermo-physical properties of the fluid streams and the walls are constant and uniform. 

3. The central fluid is either the hottest or the coldest fluid. 

4. The exchanger shell or shroud is adiabatic and the effects of the asymmetry in the top and bottom 

layers are neglected.  

5. Flow is well mixed in any of the passages, so that variation of temperature and velocity in the 

fluid streams in a direction normal to the separating plate (z-direction) is negligible. 

6. The primary and secondary areas of the separating plates have been lumped together, so that the 

variation of wall temperature is also two-dimensional. 



 

7. Transverse conduction through fins between adjacent separating sheets is neglected. This implies 

there will be a temperature extremum in the fin temperature profile [16]. 

8. The thermal resistances on both sides, comprising film heat transfer coefficient of primary and 

secondary surface and fouling resistance, are constant and uniform. 

9. Heat transfer area per unit base area and surface configurations are constant. 

10. Transverse thermal resistance of the separating sheets in a direction normal to it (z-direction) is 

negligible. 

 Due to the introduction of a third fluid the process of energy exchange in a three-fluid heat 

exchanger is more complex compared to that in a conventional heat exchanger. The central fluid 

stream exchanges heat simultaneously with two adjacent streams. The exact distribution of this 

thermal energy plays an important role in steady state as well as in the dynamic behavior of the heat 

exchanger. This distribution depends upon the conditions of all the three fluids and the total area 

associated with them. As the thermo-physical properties of the top and the bottom fluid streams may 

be different in a general situation, it is likely that the two separating sheets will have different 

temperatures, and the fins in the central passage will have an asymmetric temperature profile. This 

indicates that the central stream may transfer heat to the top and the bottom separating sheets at 

different rates. To take care of this phenomenon it is assumed that part of the secondary surface is 

associated with the top separating sheet (w1), and the rest is associated with the bottom separating 

sheet (w2). This idealization is depicted in Fig. 2 (a) and 2 (b). 

 Assuming (ηhA)b-w1 and (ηhA)b-w2 are the convective conductances associated with the top 

and the bottom separating sheet respectively, the following relationship can be obtained. 
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A non-dimensional parameter φ as defined in eq. (2) may be introduced. 
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Proceeding with the same logic it may be assumed that the total thermal capacity of the separating 

sheets is also distributed amongst the upper and the lower sheet in the ratio ψ and (1-ψ) respectively. 

 (Mc)w1 + (Mc)w2 = (Mc)w (3) 

Then, 
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w
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Based on the above assumptions and idealizations, the conservation of energy for the three 

fluid streams and the two separating sheets can be expressed in non-dimensional form for an 

infinitesimal small control volume as follows. 

For fluid streams a, b and c one gets Eq. (5), (6) and (7) respectively. 
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When fluid c is moving in x-direction 
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When fluid c is moving in y-direction 
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Similarly for the two separating sheets w1 and w2, heat conduction equations are given in Eq. (8) and 

(9) respectively. 
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Here Pe is axial dispersive Peclet number given by 
D.A

L)mc(

c

, where D is diffusion coefficient of the 

fluid representative of the effect of axial dispersion. 

 It may be noted that five non-dimensional parameters for the steady state performance of a 

three-fluid heat exchanger were specified in earlier work [9]. On the other hand one needs nine non-

dimensional parameters namely NTU, Ea-b, Ec-b, Ra-b, Rc-b, Va,b,c and Tc,in. The extra parameters are 

necessary in the present case to take care of the thermal capacity of the fluid streams and the 

separating sheets.  

 Further, one can introduce the number of transfer units (NTU) for the three-fluid heat 

exchanger and replace Na in terms of NTU. Conventionally NTU for three-fluid heat exchanger is 

defined considering the thermal interaction of the central fluid stream with any one of the streams [9]. 

According to this convention NTU can be defined as follows. 
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From the definition of Ra-b and Ea-b it can be shown that  
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The Eq. (5)-(9) are subjected to following initial and boundary conditions  

 Ta(X,Y,0)=Tb(X,Y,0)=Tc(X,Y,0)=Tw1(X,Y,0)=Tw2(X,Y,0)=0                (12) 
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 Ta(X,0,θ) = Ta,in = 0                                 (15) 
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          Tb(0,Y,θ) = Tb,in = φ(θ)                               (17) 
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 Tc,in (X,Y, θ) = Tc,in                                 (19) 

where Tc,in is Tc(0,Y,θ), Tc(Na,Y,θ), Tc(X,Na,θ) and Tc(X,0,θ) for the arrangements C1, C2, C3 and 

C4 respectively. 

When fluid c flows in x-direction                        
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where Z=Na and 0 for the arrangements C1 and C2 respectively. 

When fluid c flows in y-direction 
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where Z=0 and Na for the arrangements C3 and C4 respectively. 

 Equations (5)-(9) along with the boundary conditions (12)-(20) give the complete formulation 

of a three-fluid crossflow heat exchanger. Solution of this set of equations will give the dynamic 

performance of heat exchanger once the nine basic input parameters NTU, Ea-b, Ec-b, Ra-b, Rc-b, Va,b,c 

and Tc,in along with the two additional parameters Pea,b and λx,y are specified. Here φ(θ) is the 

perturbation given to the inlet temperature of the central fluid, Tb,in. In the present investigation, the 

following perturbations have been considered.  



 

 















αθ

−






>θ

≤θαθ

=θφ

αθ−

inputusoidalsinfor);sin(

inputonentialexpfor;e1

inputrampfor;
1,1

1,

inputstepfor;1

)(           (21) 

where α is assumed to be unity. 

Method of Solution 

 The conservation equations are discretized using the finite difference technique. Forward 

difference scheme is used for time derivatives, while upwind scheme and central difference scheme 

are used for the first and second order space derivatives respectively [17]. The difference equations 

along with the boundary conditions are solved using Gauss-Seidel iterative technique. The 

convergence of the solution has been checked by varying the number of space grids and size of the 

time steps. The solution gives the two-dimensional temperature distribution for all three fluids as well 

as for the separator plate. Additionally one may calculate the mean exit temperatures as follows. 
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where y’=x or y depending upon the direction of flow of fluid c.  

Results and Discussions 

 To check the validity of the numerical scheme, the solution for the steady state condition for 

the arrangement C4 at Eab=Ecb= 1, Rab=Rcb=1, V=λ=0, Pe=∞, Ta,in=0, Tb,in=1 and Tc,in=0.5, was 

compared with the analytical solutions [8]. Excellent agreement was observed as shown in figure 3. 

 The transient behavior of three-fluid crossflow heat exchanger has been studied for different 

excitations given to the central (hot) fluid inlet temperature. Performance of the heat exchanger was 

studied over a wide range of parameters as well as for sufficient time duration so that steady state 



 

conditions are obtained for each individual excitation. Some of the salient results are discussed in the 

next sections.  

Case I: Heat Exchanger with Large Core Capacity in the Absence of Core Longitudinal 

Conduction and Axial Dispersion  

 Though the formulation has been done for a generalized case, an example has been taken where 

the core capacity is large. This makes Va=Vb=Vc≈ 0, and the results are applicable to gas-to-gas heat 

exchangers.  

  Figures 4 (a), (b) and (c) exhibit the performance of the heat exchanger at NTU = 1, 5 and 10 

for step, ramp and exponential inputs respectively. In all the cases, the steady state exit temperature is 

reached by the three streams within a small time interval at NTU=1. However, the difference of mean 

exit temperatures (at steady state) is the maximum in this case with the bottom and the upper layers 

having the maximum and the minimum values of temperature respectively. This is a common trend 

for step, ramp and exponential excitations as depicted in figure 4 (a), (b) and (c) respectively. 

  The time required to reach the steady state increases with the increase of NTU. Nevertheless 

with the increase of NTU, equalization of temperature between different streams takes place as more 

area for heat transfer is available. The temperature difference between the coldest stream and the 

hottest stream decreases at any time interval. Further, the exit temperatures of the two extreme fluid 

layers become identical from the very beginning even at NTU=5. It may be noted that, although the 

inlet temperature of fluid a is lower than that of fluid b, its exit temperature is higher than that of fluid 

b at higher NTUs.  

  For a sinusoidal variation of the inlet temperature of the central fluid, two different NTUs 1 

and 5 have been considered, and the results are depicted in figure 4(d). At lower NTU, steady state is 

reached early even in case of sinusoidal excitation like the previous cases. The time lag of oscillations 

increases with the increase in NTU. All the temperature responses have a periodic nature whose 

amplitude and frequency vary with time and attain a constant value once steady state is reached. At 



 

steady state the mean exit temperatures of all the three fluid streams have a steady periodic nature, 

which can be described by a suitable sine-function. This fact may be appreciated from figure 5. Here 

all the mean exit temperatures of the three fluids have been plotted as functions of the inlet 

temperature of the central fluid. Near the steady state, three Lissajous figures of elliptic shapes are 

obtained for the three exit temperatures. This indicates that the mean temperatures at outlet are also 

experiencing a sinusoidal variation with the same frequency as Tb,in but  with different amplitudes. 

Therefore, for a sinusoidal excitation of the central fluid, figure 5 provides a very convenient and 

concise way of determining the response of all the three fluid streams under steady state conditions. 

  The effect of the conductance ratio on the mean exit temperature of the three fluids is 

depicted in figure 6. Although the conductance ratio does not have any effect on the steady state 

performance of the heat exchanger, its effect should not be neglected during the transients. From 

figure 6, it may be noted that a lower value of the conductance ratio increases the time to reach the 

steady state and the effect is more pronounced in the central fluid stream. 

Case II: Heat Exchanger with Finite Core Capacitance, Core Longitudinal Conduction 

and Axial Dispersion  

 In the second case the transient behavior has been investigated with the introduction of the 

heat capacity ratio (V), two-dimensional longitudinal conduction in the separating sheets and axial 

dispersion in the fluids.  

 Because the step, ramp and exponential responses give similar behavior as observed earlier, 

only a step excitation has been considered for further analysis. Similar to the previous case, 

arrangement C4 only has been considered for the effect of various parameters.  

The effect of longitudinal conduction in a heat exchanger core has been studied next. The exit 

temperature responses of the three fluids are depicted in figure 7. Initially, the temperature of the 

hotter fluids b and c decreases with an increase in longitudinal conduction, showing a reduction in the 

mean exit temperatures. The effect is not comparably significant on the lower temperature fluid (fluid 



 

a). However, in the later part of the transient period, performance of the fluids in the upper and lower 

layers deteriorates. The change in the performance of the middle layer fluid is insignificant near 

steady state. 

 The effect of axial dispersion on the step response of the three fluids for arrangement C4 has 

been depicted in figure 8. It shows that the increase of axial dispersion (decrease in Pe) adversely 

affects the performance of the heat exchanger. The mean exit temperature of the hotter fluids (fluids b 

and c) increases, and there is reduction in that of the cold fluid (fluid a). The difference is larger at 

smaller Pe, and it decreases with an increase in Pe. Practically, above Pe=20, the effect of axial 

dispersion is not much significant, and the difference in the performance is very small. 

Comparison of different arrangements  

 A dynamic analysis of different arrangements of three-fluid single-pass crossflow heat 

exchanger for step disturbances in the central fluid stream has been conducted and is depicted in 

figure 9. It shows that for the central (hot) fluid, the mean exit temperature can be given in decreasing 

order as C2>C3>C4>C1 [Fig. 9(b)]. For the upper and the lower fluids, the mean exit temperature 

decreases as C4<C1<C2<C3 [Fig. 9 (a) and (c)]. However, the differences in the mean exit 

temperature between arrangements C2 and C3, and between C1 and C4, are very small for all the 

three fluids. The selection of the arrangements can be done on the basis of the relative importance of 

the fluids. For the central (hot) fluid, arrangements C2 and C3 are better where all the fluid 

combinations are either cross or counter. However, arrangements C1 and C4 are better for the cold 

fluids (fluid a and fluid c). Between the cross co-current (C4) and the cross counter current (C3) heat 

exchangers, C4 performs better if the cold fluids are the desired fluids. This has also been proved 

earlier by the steady state analysis [6, 18]. The behavior for ramp and exponential inputs are similar to 

that for a step input because of the specific nature of the input functions.  



 

Conclusion 

 In the analysis, a typical case of three-fluid crossflow heat exchanger with large core capacity is 

analysed based on a finite difference technique. The analysis has been extended to finite core capacity 

in the presence of core longitudinal conduction and axial dispersion. In general, it has been seen that 

at low NTU the heat exchanger reaches the steady state within a small interval of time, whereas at 

high NTU the temperature difference between the streams decreases. In the case of a sinusoidal 

excitation, the exit temperatures initially show unsteady periodic behavior. Gradually this becomes 

steady while the frequency ultimately reaches the frequency of the input excitation. It has been shown 

that the functional dependence of exit temperatures on the inlet excitation can be depicted with the 

help of Lissajous plots under steady state. Different arrangements for single pass crossflow heat 

exchangers have also been compared. 

 Although the numerical solution considered above has been applied to a few typical 

examples, other cases of transient heat transfer in three-fluid heat exchangers can also be analyzed. 

Moreover, from the given analysis one can determine the transient behavior of the core temperature at 

different time instants, which may be needed for mechanical design and calculation of thermal 

stresses. 

 

Nomenclature 

A, AHT - heat transfer area, m
2
 

Ac - flow area, m
2
 

C - heat capacity rate (mc), W/K 

c, Cp - specific heat, J/kg-K 

C1, C2, C3, C4 - crossflow arrangements 

D - diffusion coefficient, W/ m-K 
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Greek letters 

δ - equivalent thickness of the separating sheet, m 

η - overall surface efficiency  

θ - 
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, dimensionless time 

λ - longitudinal heat conduction parameter, 
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µ  - dynamic viscosity, N-s/m
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ρ - density, kg/ m
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φ(.) - perturbation in hot fluid inlet temperature 
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Subscripts 

a, b, c - fluid streams a, b and c 

c, h - cold and hot side 

ex - exit 

i, in - inlet 



 

max  - maximum 

mean  - mean value 

min - minimum 

o, out - exit/outlet 

w  - separating wall 

1, 2 - state 1 and 2 
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Figure 1 Four possible arrangements for three-fluid single-pass crossflow heat exchanger [9]. 

Figure 2 Schematic representation of (a) flow and separating sheet with fins, and (b) distribution of 

convective resistance of fluid b and the heat capacity of the separating sheet with fins. 

Figure 3 Validation of the numerical results with the analytical steady state solutions [8]. 

Figure 4 Effect of NTU on (a) step, (b) ramp, (c) exponential and (d) sinusoidal response for three-

fluid crossflow heat exchanger with large core capacity in the absence of longitudinal conduction and 

axial dispersion. 

Figure 5 Steady state variation of mean exit temperature of the three fluids with respect to the hot 

fluid inlet temperature for sinusoidal excitation. 

Figure 6 Variation of mean exit temperature of the three fluids with conductance ratio R. 

Figure 7 Effect of longitudinal conduction on step response of mean exit temperature of the three 

fluids for arrangement C4. 

Figure 8 Effect of axial dispersion on step response of mean exit temperature of the three fluids for 

arrangement C4. 

Figure 9 Comparison of the four possible arrangements of three-fluid crossflow heat exchanger for 

step response. (a) fluid a, (b) fluid b, and (c) fluid c. 
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Fig.5, Mishra, JHT 
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Fig.7, Mishra, JHT 
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Fig.8, Mishra, JHT 
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