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Abstract: Three computing models, based on the 
multilayer perceptron and capable of fuzzy classi- 
fication of patterns, are presented. The first type of 
fuzzy neural network uses the membership values 
of the linguistic properties of the past load and 
weather parameters and the output of the network 
is defined as fuzzy-class-membership values of the 
forecast load. The backpropagation algorithm is 
used to train the network. The second and third 
types of fuzzy neural network are developed based 
on the fact that any fuzzy expert system can be 
represented in the form of a feedforward neural 
network. These two types of fuzzy-neural-network 
model can be trained to develop fuzzy-logic rules 
and find optimal input/output membership values. 
A hybrid learning algorithm consisting of 
unsupervised and supervised learning phases is 
used to train the two models. Extensive tests have 
been performed on two-years of utility data for 
generation of peak and average load profiles 24 
hours and 168 hours ahead, and results for typical 
winter and summer months are given to confirm 
the effectiveness of the three models. 

1 Introduction 

The application of artificial-neural-network- (ANN) and 
fuzzy-logic-based decision-support systems to time-series 
forecasting has gained attention recently [7-121. ANN- 
based load forecasts give large errors when the weather 
profile changes very fast. Also, extremely slow training or 
even training failure occurs in many cases owing to difi- 
culties in selecting proper structures of the neural- 
network paradigm being used, and owing to the errors in 
associated parameters such as learning rates, activation 
functions etc. which are fundamental to any back- 
propagation neural network. On the other hand, the 
development of a fuzzy decision system (fuzzy expert 
system) for load forecasting requires detailed analysis of 
data and the fuzzy-rule base has to be developed 
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heuristically for each season. The rules fixed in this way 
may not always yield the best forecast. The shortcomings 
of the neural-network paradigm can be partly remedied 
by the recognition of the fact that the learning speed and 
accuracy of an ANN may often be enhanced by utilising 
the knowledge of neural-network expertise in a specific 
application. This human knowledge can be encoded by 
fuzzy expert systems, which are integrated into the fuzzy 
neural network (FNN). 

The present work is aimed at achieving a robust load 
forecast with much improved accuracy using three differ- 
ent models of FNNs. For the neural network to be called 
a FNN, the signal and/or the weights should be fuzzified 
[14]. The first type of FNN, abbreviated FNN,, is based 
on the multilayer perceptron, using the backpropagation 
algorithm. The input vector consists of the membership 
values of linguistic properties of the past load and 
weather parameters and the output vector is defined in 
terms of fuzzy-class-membership values of the forecast 
load. The second and third types of FNN, abbreviated as 
FNN, and FNN,, are based on the argument that any 
fuzzy expert system employing one block of rules may be 
approximated by a neural network (feedforward, 
multilayered). The input vector to FNN, and FNN, con- 
sists of differences in weather parameters between the 
present and forecast instant. The output of the FNN, 
and FNN, gives the load correction which, when added 
to the past load, gives the forecast load. The learning 
algorithm for FNN, and FNN, combines unsupervised 
and supervised learning procedures to build the rule 
nodes and train the membership functions. The super- 
vised learning procedure for FNN, uses the gradient- 
descent backpropagation algorithm [SI for finding the 
optimum weights and membership functions, while for 
FNN, the supervised learning procedure comprises of 
Kalman-filter-based algorithm [I61 which is similar to 
the least-square adaptive techniques. The least-square 
adaptive filtering techniques are known to have rapid 
convergence properties over the backpropagation algo- 
rithm. In this paper FNNs using fuzzy weights are not 
considered. 

A few examples of peak-load forecasting and average- 
load forecasting using the above techniques for a typical 
utility with 24-hour and 168-hour lead times in the 
months of winter and summer are presented, and results 
obtained using the two FNN models are compared. 

The authors acknowledge funds from the US 
National Science Foundation (NSF grant INT- 
9209103 and INT-9117624). 
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2 Type 1 : fuzzy neural network (FNN,) for load 
forecasting 

The network model for FNN, is shown in Fig. 1. The 
FNN, model is similar to ANN with the input and 

function for 
forecast load 

input linguistic variables 

I I, 
layer-1 layer-2 

(input-membership function) (hidden neurons) 

Type I fuzzy neural network ( F N N , )  for load forecasting Fig. 1 
S = small, M = medium, L = large 
P = load, Q = temperature, H = humidity, t = iteration, y, = weights 

output parameters fuzzified. This is very important for 
load forecasting since there are so many fuzzy factors 
which are difficult to characterise by a number. An 
instance of this could be weather conditions such as tem- 
perature, humidity, cloud cover etc. The FNN, clusters 
the input parameters such as load of ith day, maximum 
and minimum temperatures and humidities of the ith day 
and (i + n)th day into fuzzy spaces for forecasting load 
on the (i + n)th day (n is the lead time for the load fore- 
cast, i.e. n = 24 for 24 h ahead forecast, n = 168 for 168 h 
ahead forecast etc.). The load, temperature and humidity 
are classified into three categories, i.e. small, medium and 
large. The output nodes of FNN, represents the class- 
membership function of the forecast load. The classi- 
fication of input and output linguistic variables into fuzzy 
spaces involves an increase in the amount of computation 
required compared with the ANN. This is suitably offset 
by the fact that the conventional crisp backpropagation 
algorithm may not necessarily converge when the train- 
ing patterns are nonseparable with overlapping fuzzy 
classes. Further, in the proposed FNN, the error back- 
propagated has more weight for nodes with higher mem- 
bership values and hence induces greater weight 
corrections for that class. Thus the ambiguity in model- 
ling the uncertain vectors is automatically reduced. 

In many cases it is convenient to express the member- 
ship function of a fuzzy subset in terms of a standard 
nonlinear function. The Gaussian membership function is 
used for the input and output linguistic parameters of the 
FNNs in this study: 

iVXh p(x;  a, b) = exp 

Here, a and b are the centre and width of the Gaussian 
function, respectively. 

Fig. 2 shows the membership functions for peak load, 
maximum temperature and maximum humidity in 
winter. The backpropagated error is computed with 
respect to the desired class-membership values for the 
output and each weight is updated using the gradient- 
descent backpropagation algorithm [SI. The input layer 
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consists of nodes equal to the product of the input 
linguistic-pattern points and the fuzzy-term sets (i.e. three 
term sets for each pattern point). The output layer con- 

load, MW 

0 

temperature, "F 

b 

relative humidity "1. 

C 

Fig. 2 Peak-load, maximum-temperature and maximum-humidity 
membership functions using F N N ,  in winter 
S = small, M = medium, L = large 
a Peak load 
b Maximum temperature 
c Maximum rclaove humidity 

sists of three terms sets for the forecast load. The number 
of hidden nodes is fixed empirically during training. 

After the training phase is over, the input consists of 
load, temperature and humidities of the ith and the fore- 
cast temperature and humidity values of the (i + n)th 
day. The output of FNN, gives the class-membership 
values of forecast load of the (i + n)th day. The final fore- 
cast load is obtained by using the centre-of-gravity defuz- 
zification technique [13-151. 
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An alternative to the neural-network-based load forecast 
is the expert-system approach. A fuzzy expert system for 
load forecasting consists of a collection of fuzzy 
IF-THEN rules showing the relationship between load 
and weather variables. One of the difficulties with the 
fuzy expert system is the rule matching and composition 
time,, apart from the time-consuming process of adapting 
the rules. The neural network eliminates the rule- 
matching process and stores the knowledge in the link 
weights. The decision signals can be output immediately 
after the input data are fed in. Fig. 3 shows the proposed 

Type 2: fuzzy neural network (FNN,) for load 
forecasting 

U U U U U  
layer-l layer-2 loyer-3 layer-4 layer-5 
(input (input (rule nodes) (output term (output linguistic 
i~nguota term nodes) nodes) 
nodes) nodes) 

Fig. 3 
load forecartiny 
At! = ditferential temperature 
A f f  =differential humidity 
t = iteration number 
W,, = weights 
0,‘. =actual load correction 
elL = desired load correction 

Type 2 and type 3 fuzzy neural network ( F N N ,  and FNNJJor  

FNN, to model the fuzzy expert system in the form of an 
F” using the ANN architecture. The FNN, clusters 
the differential temperatures and humidities of the ith 
and (i + n)th day into fuzzy-term sets. The output of 
FNN, is the final crisp-load correction (ZL,-). Hence the 
forecast load on the (i + n)th day [ P I ( ;  + n)] is given by 

P,(i + n) = P(i) + Z L c ( i )  (2) 
where n is the lead time for the forecast. 

FNN, has a total of five layers. Nodes at layer one are 
the input linguistic nodes. Layer five is the output layer 
and consists of two nodes [one is for the actual load cor- 
rection (ZLJ and the other is the desired load correction 
(eLc)]. Nodes at layers two and four are term nodes 
which act as membership functions to represent the term 
sets of the respective linguistic variables. Each node at 
layer three represents the preconditions of the rule nodes, 
and layer-four links define the consequences of the rules. 
The functions of each layer is described as follows: 

(a) layer 1:  the nodes in this layer just transmit the 
input feature xi ,  i = 1,2 to the next layer; 

(b) layer 2: each input feature xi ,  i = 1, 2 is expressed 
in terms of membership values p;(qj ,  bid, where i corres- 
ponds to the input feature and j corresponds to the 
number of term sets for the linguistic variable x i .  The 
membership function pi, uses the Gaussian membership 
function given in eqn. 1 ; 

(c) layer 3: the links in this layer are used to perform 
precondition matching of fuzzy-logic rules. Hence the 
rule nodes perform the product operation (or AND 
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operation) : 

where R, = 1, 2, . . . , n. R ,  corresponds to the rule node 
and n is the maximum number of rule nodes. However, if 
the fuzzy AND operation is used 

P R p  = n& (3) 

pRP = min {pii} (4) 
(d) layer 4: the nodes in this layer have two operations, 

i.e. foreward and backward transmission. In forward- 
transmission mode, the nodes perform the fuzzy OR 
operation to integrate the fired rules which have the same 
consequence 

P 

p4 = ,E U4 ( 5 )  
, = 1  

where p corresponds to the links terminating at the node. 
In the backward-transmission mode, the links function 
exactly the same as the layer-two nodes. 

(e) layer 5: there are two nodes in this layer for obtain- 
ing the actual and desired output-load correction, 
respectively. The desired output-load correction (eLc) is 
fed into the FNN, during learning whereas the actual 
load correction ( Z L c )  is obtained by using the centroid 
defuzzification method. 

3.1 Hybrid learning algorithm for FNN, 
The hybrid learning scheme consists of unsupervised- and 
supervised-learning phases. In the unsupervised phase, 
the initial membership functions of the input and output 
linguistic variables are fixed and an initial form of the 
network is constructed. Then, during the learning 
process, some nodes and links of this initial network are 
deleted or combined to form the final structure of the 
network. In the supervised-learning phase, the input and 
output membership functions are optimally adjusted to 
obtain the desired outputs. 

3.1 . I  Unsupervised-learning phase 
Given the training input data x,(t), i = 1, 2, the desired 
output-load correction eLJt) and the fuzzy partitions 
I p i i  1, we wish to locate the membership functions (i.e. aij 
and bij) and find the fuzzy-logic rules. 

Kohonen’s feature-maps algorithm [I31 is used to find 
the values for aij and b,: 

IIx(t) - ai, ciorest(t)II = min Wit) - 4 ) l l l  

ai, ciosest(t + 1) = ai, elosest( t )  + ~l(t){xit) - ai, erosest(t)) 

aiAt + 1) = 4) for aij f ai, cfos.sI 

(6) 

(7) 
(8) 

where q(t)  is the monotonically decreasing learning rate 
and t is the number of term sets for the linguistic variable 
xi .  

This adaptive formulation runs independently for each 
input linguistic variable x i .  

The width bij is determined heuristically at this stage 
[13] as follows: 

1sjsr 

(9) 

where r is an overlap parameter. After the parameters of 
the membership functions have been found, the weights 
in layer four are obtained by using the competitive- 
learning algorithm [6] as follows: 

(10) 
where LIj  serves as the win-loss index of the rule node at 
layer three and LI4 serves as the win-loss index of the jth 
term node at layer four, respectively. 

wj = LI4(Llj - lqj) 
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After the competitive learning through the whole 
training data set, the link weights at layer four represent 
the strength of the existence of the corresponding rule 
consequences. If a link weight between a rule node and 
the term node of the output linguistic node is very small, 
all the corresponding links are deleted, meaning that this 
rule node has little or no relation to the output. 

Once the consequences of rule nodes have been deter- 
mined, the rule combination is performed to reduce the 
number of rules in the following manner. The criterion 
for the choice of rule nodes is 

(i) they have the same consequences; 
(ii) some preconditions are common to all the rule 

nodes in this set; and 
(iii) the union of other preconditions of these rule 

nodes composes the whole term set of some input linguis- 
tic variables. 

The rule nodes which satisfy these criteria are replaced by 
a new rule node with common preconditions. 

3.1.2 Supervised-learning phase 
Once the fuzzy-logic rules have been found, supervised 
learning is used to find the optimum weights and the 
input and output membership functions by using the 
gradient-descent backpropagation algorithm. The de- 
tailed steps are given in Appendix 9. l .  

The hybrid learning procedure is summarised in Fig. 
4. The convergence speed of the supervisory-learning 

membership functions by Kohonens 

unsupervlsed find welghts by competitive 
learning 

I 

Fig. 4 Flowchart ofproposed hybrid learning algorithm for  F N N ,  

scheme for FNN, is found to be superior to that of the 
supervisory-learning scheme for FNN,, since the 
unsupervised-learning process for FNN, had carried out 
much of the learning process in advance. The con- 
vergence speed of the supervised-learning process can be 
further improved by solving the weight-update equations 
at layer three and the input- and output-membership 
functions at layers one and two by linear Kalman-filter 
equations [16]. 

4 Type 3: fuzzy neural network (FNN,) for load 
forecasting 

Referring to Fig. I ,  the tuning of the Gaussian member- 
ship function at layers two and four (a i j ,  bij) is similar to 
the weight-update equations at layer three. The 
unsupervised-learning phase of the FNN, model is the 
same as for the FNN, model. The supervised-learning 
phase of the FNN, model uses the linear Kalman-filter 
equations for updating the weights and the membership 
function. Unlike the backpropagation technique, this 
algorithm assumes that the estimated weight matrix is 
nonstationary and hence will allow the tracking of time- 
varying data such as those of load forecasting. 

This algorithm defines locally a gradient based on 
present and past data at each node, and updates the 
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weights of each node using the linear Kalman-filter equa- 
tions so as to bring this gradient identically to zero 
whenever an update is made. Performing the update thus, 
and defining the gradient in this manner, ensures that 
maximum use is made of available information. 

The gradient for the linear combiner at each node is 
defined as 

G = R W - C  (11) 

Here R is the autocorrelation matrix for each layer and is 
calculated as 

N P  

R = 1 JffNP-"Px "P x r  "P (12) 
n p =  1 

and Cis  the crosscorrelation matrix and is given by 
N P  

c =  1 J q . N P - " P d  "P x r  "P (13) 
" p = l  

where N P  denotes the total number of patterns and ff 
denotes the forgetting factor. d,, and xnp  are the summa- 
tion output and the output of the nonlinearity (Gaussian 
membership function) for the layer-two and layer-five 
nodes, respectively. As the layer-four nodes contain no 
nonlinearity term, therefore d,,  = xnp  . 

The weight vector which makes C = RW - C zero is 
the solution to the equations. The detailed weight-update 
algorithm using the linear Kalman filter is given in 
Appendix 9.2. 

5 Implementation results 

To evaluate the performance of the FNN models, load 
forecasting is performed on typical utility data. The 
models ANN, FNN,, FNN, and FNN, are tested on 
two years of utility data for generating peak and average 
load profiles and some of the results are given in the sub- 
sequent subsections. In References 7-9 it has been shown 
that ANN gives the best prediction and accuracy com- 
pared with conventional approaches. Therefore in this 
paper the results of FNN,, FNN, and FNN, are com- 
pared with those of the ANN approach. 

The training sets are formed separately for each of the 
seven day types (i.e. Tuesdays through Thursdays, 
Mondays, Fridays, Saturdays, Sundays, holidays). The 
selection of training patterns is given in Reference 9. 

5.7 Peak-load forecasting 
For peak-load forecasting, the following training data are 
used for ANN and FNN, : 

Input pattern: Pmx(i), amdX(i), Hmx(i), @iax(i  + n),  
H A x ( i  + n)  

Output pattern: P,,,,,Ji + n)  and p{P,,,,,Ji + n ) }  for 
ANN and FNN,, respectively. 

where P,  0 and H stand for load, temperature and 
humidity, respectively. The superscript f denotes the fore- 
cast values for @ and H ;  n is the lead time for forecast 
( n  = 24 for 24 h-ahead forecast, n = 168 for 168 h-ahead 
forecast). 

The forecast value PmaX(i + n)  for FNN, is obtained 
from class-memberships values using the defuzzification 
procedure given in Reference 15. 

For FNN, and FNN, , the training patterns used are: 
Input pattern: A@,,,,Ji. i  + n)  and AHmx(i ,  i  + n)  
Output pattern: eLc(i), the desired load correction 

Here again, the weather variables used for the ( i  + n)th 
day are the forecast values. The Pmax(i + n)  for FNN, 
and FNN, are obtained using eqn. 2. 

I E E  Proc.-Gener. Transm. Distrib., Vol. 142, No.  5 ,  September I995 



Table 1 gives the membership functions learned using 
FNN, for 24 h-ahead peak-load forecasting in winter. 
For example, rule 0 is interpreted as 

Table 1 : Learned fuzzy logic rules for 24 h-ahead peak-load 
forecastina usina FNN. in winter 

Rule Term sets 

Preconditions Consequence 

i + 1) AHma,(;, i + 1) bL,-(i) 

0 0 3 7 
1 0 4 7 
2 1 0 8 
3 1 1 7 
4 1 2 7 
5 1 3 6 
6 1 4 6 
7 2 0 8 
8 2 1 7 
9 2 2 7 

10 2 3 6 
11 2 4 7 
12 3 1 2 
13 3 2 4 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

3 
4 
4 
4 
5 
5 
5 
5 
5 
6 
6 
6 

3 
2 
3 
4 
0 
1 
2 
3 
4 
0 
1 
2 

6 
5 
6 
1 
3 
2 
1 
1 
0 
1 
1 
0 

RO: I F  A@,,, is term 0 and AH,,, is term 3 THEN 
CLC is term 7. 

Fig. 5 gives the membership functions learned for FNN, 
after the first (unsupervised-learning) and second 
(supervised-learning) phases. Fig. 6 gives the plot of mean 
absolute percentage errors (MAPEs) against the number 
of iterations for the ANN, FNN,, FNN, and FNN, 
models, respectively. The results in Figs. 5 and 6 were 
obtained for 24 h-ahead peak-load forecasting in winter. 

From Fig. 6 we see that FNN, gives a extremely fast 
rate of convergence followed by FNN,, ANN and 
FNN,, respectively. The linear Kalman-filter equations 
and the variable-forgetting factor used for the training of 
FNN, are instrumental in driving the MAPE low during 
the first few hundred iterations until the bias caused by 
the initial parameters, arbitrarily chosen, is eliminated. 
Also the convergence speed of FNN, is found to be 
slower than that of ANN, even though it is trained with 
the same backpropagation algorithm, because of the 
increased amount of computation involved in classifying 
the input and output of FNN, into fuzzy-term sets, hence 
requiring a greater number of weight updates. However, 
FNN, converged to a lower MAPE compared with 
ANN. 

Tables 2 and 3 give the 24 h- and 168 h-ahead peak- 
load-forecastig results, the number of iterations for con- 
vergence and the MAPEs for the month of January 
(winter) using the ANN and three hybrid models. 

From Tables 2 and 3, we see that FNN, gives a very 
accurate prediction, followed in accuracy by FNN,, 
FNN, and ANN, respectively. Also we find that the 
168 h-ahead-prediction results are comparable with the 

Table 2: Peak-load forecasting in Januan, (winter) using 24 h-ahead forecast 

Day Actual 
load 

Peak 
forecast 
(NN) 

(MW) 
1 2690 
2 2628 
3 2703 
4 2592 
5 2530 
6 2574 
7 2389 
8 2513 
9 2500 

10 2450 
11 2551 
12 2763 
13 2603 
14 2914 
15 2761 
16 2514 
17 2543 
18 2435 
19 2496 
20 2551 
21 2813 
22 2537 
23 2381 
24 2459 
25 2505 
26 2429 
27 2438 
28 2748 
29 2388 
30 2175 
31 2539 

(MW) 
2556.6 
2547.0 
2676.8 
2602.6 
2547.6 
2578.1 
2382.0 
2534.6 
2394.0 
2381.1 
251 3.9 
2869.2 
2544.2 
2783.1 
2845.0 
2435.4 
2648.2 
2498.8 
2513.7 
2485.6 
2881.9 
2435.9 
2310.5 
2533.8 
2509.3 
2506.8 
2329.1 
2780.6 
2502.9 
221 1.5 
2480.4 

4.96 
3.08 
0.97 

-0.41 
-0.69 
-0.16 

0.29 
-0.86 

4.24 
2.81 
1.46 

-3.85 
2.26 
4.50 

-3.05 
3.1 3 

-4.1 4 
-2.62 
-0.72 

2.56 
-2.45 

3.99 
2.96 

-3.04 
-0.1 7 
-3.20 

4.47 
-1.19 
-4.82 
-1.68 

2.31 

Peak 
forecast 
(FNN,) 

(MW) 
2592.4 
2729.5 
2674.5 
2592.3 
2507.0 
2595.3 
2400.9 
2487.8 
2396.3 
2406.1 
2547.0 
2850.0 
2581 .O 
2987.0 
271 9.0 
2588.5 
2606.4 
2488.9 
2493.4 
2524.0 
2879.7 
2483.0 
2324.0 
2448.7 
2487.2 
2450.2 
2367.4 
2786.1 
2334.1 
2214.6 
2490.6 

3.63 
-3.86 

1.05 
-0.01 

0.91 
-0.83 
-0.50 

1 .oo 
4.1 5 
1 .80 
0.1 6 

-3.1 5 
0.85 

-2.50 
1.53 

-2.97 
-2.50 
-2.21 

0.1 0 
1.06 

-2.37 
2.1 6 
2.39 
0.42 
0.71 

-0.87 
2.89 
1.39 
2.26 

-1.82 
1.90 

Peak 
forecast 
(FNN,) 

(MW) 
2659.3 
2581.7 
2681 .O 
2604.2 
251 7.2 
2581.1 
2424.0 
2496.3 
2594.8 
2483.0 
2529.5 
2845.7 
2609.6 
2883.7 
2754.5 
2562.7 
2527.2 
2474.3 
2490.6 
2593.6 
2831.8 
2582.7 
2326.7 
2451.5 
2520.6 
2381.2 
2488.4 
2761.9 
2358.0 
21 48.9 
2522.0 

PE 
(FNN,) 

1.14 
1.76 
0.81 

-0.47 
0.51 

-0.27 
-1.47 

0.66 
-3.79 
-1.35 

0.84 
-2.99 
-0.25 

1.04 
0.24 

-1.94 
0.62 

-1.61 
0.21 

-1.67 
-0.67 
-1.80 

2.28 
0.31 

-0.62 
1.97 

-2.07 
-0.51 

1.26 
1.20 
0.67 

Peak 
forecast 

(MW) 

(FNNd 

2733.2 
2668.1 
2692.5 
2566.3 
2542.6 
2534.6 
2435.8 
2528.1 
2566.9 
2427.5 
2559.8 
2807.4 
261 9.8 
2909.9 
2740.8 
2476.9 
2565.9 
2442.2 
2501.8 
2572.9 
281 1.5 
2559.8 
2422.3 
2437.0 
251 2.1 
2384.5 
2396.0 
2741.6 
2421.6 
2209.7 
2522.7 

PE 
(FNN,) 

-1.61 
-1.52 

0.39 
0.99 

-0.50 
1.53 

-1.96 
-0.60 
-2.68 

0.91 
-0.34 
-1.61 
-0.64 

0.1 4 
0.73 
1.47 

-0.90 
-0.30 
-0.23 
-0.86 

0.05 
-0.90 
-1.74 

0.89 
-0.28 

1.83 
1.72 
0.23 

-1.41 
-1.60 

0.64 

MAPE 2.48 1.74 1.19 1.01 

Iterations 1100 1940 700 490 
required 
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results obtained for 24 h-ahead predictions as the load 
forecasting is performed as one-step process and hence 
the forecast error for past days do not add up to the final 

where n is the lead time for the forecast as given in 
Section 5.1. The forecast load from FNN, is obtained in 
a manner similar to that in Section 5.1. 
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Fig. 5 
a Maximum temperature difference (after unsupervised learning) 
b Maximum temperature diKerence (after supervised learning) 
c Maximum relative-humidity difference (after unsupervised learning) 

Learned membership Junction for  peak-load forecasting in winter using F N N ,  
d Maximum relative-humidity difference (after supervised learning) 
e Maximum peak-load difference (after unsupervised learning) 
f Maximum peak-load diKerence (after supervised laming) 

forecast. However, as the lead time is increased to 168, 
the forecast errors for four days in the month of January 
using FNN, exceeded 4%. As the main purpose of this 
paper is to make a comparative assessment between 
FNNs and ANN, no attempt is made to reduce the fore- 
cast errors further. 

5.2 Average -load forecasting 
For average-load forecasting, the following training data 
are used for ANN and FNN, : 

Input pattern : P,,v(i), @,,&), @,,,A H,,,,,&), H,,,(i), 
@d,,(i + n), @f,,(i + n), Hiax( i  + n), 

Output pattern: Pao(i + n) and p{Pao(i  + n)}  for ANN 
and FNN,, respectively, 

540 

+ n) 

For FNN, and FNN, , the training patterns used are 
Input pattern: A@,,,Ji, i + n), AOmin(i, i + n),  AHmX(i, 

Output pattern: eLc(i), the desired load correction 
i + n). AHmi& i + n) 

The P0Ji  + 1) for FNN, and FNN, is obtained using 
eqn. 2. 

For the average-load forecast also, the forecast tem- 
perature and humidity values are used for the day of the 
forecast. 

Table 4 presents the average-load-forecasting results, 
number of iterations for convergence, PES and MAPEs 
for the ANN, FNN,, FNN, and FNN, models, respect- 
ively, for the month of June using 24 h-ahead predictions. 
From these results we note the improved performance of 
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the FNN, model in terms of faster convergence and 
improved overall accuracy, followed by the F'", , 
FNN, and ANN models, respectively. 

I 
1 LOO 800 1200 1600 Zoo0 2400 

number of iteraiions 

Fig. 6 
number, 24 h-aheadforecast in January (winter) 

_____ F", 
~~ .~ F", 

F", 

Comparison of mean absolute percentage error against iteration 

ANN ~- 

. . . . . . . 

The one-week-ahead average-load forecast is also 
obtained for the month of June using the above fore- 
casting models, and Table 5 presents these results. The 
KaLman-filter-based load-forecasting model takes fewer 
iterations and produces an accurate forecast compared 

with the other models. It is further observed that the 
errors in the average-load forecast are comparatively 
much smaller than for the peak-load forecast. 

6 Discussion 

The proposed hybrid fuzzy-neural-network models are 
found to be very powerful in providing an accurate load 
forecasting. Although the results for two seasons of the 
year are presented in this paper for validating the effect- 
iveness of this approach, extensive tests have been con- 
ducted for other seasons, Sundays, holidays and special 
days of the year. From the results presented in this paper, 
it can be observed that significant accuracy can be 
achieved for 24 h-ahead hourly load forecasts and the 
PES can be less than 1. However, the PES increase for 
peak-load forecasts and will remain less than 2. If the 
lead time increases to one week, the Kalman-filter-based 
hybrid model yields a PE of around 2 for the average- 
load forecast and around 3 for the peak-load forecast. 
Further, the results presented in the Table also reveal the 
superiority of the Kalman-filter-based hybrid-forecasting 
model over the ANN and other fuzzy-neural-network 
forecasting models in terms of speed of convergence, 
MAPE and maximum percentage error. 

The accuracy of the hybrid models can be further 
enhanced by choosing a greater number of fuzzy overlap- 
ping sets for fmification of input variables instead of the 
three used for this application. Also, the choice of mem- 
bershp function is flexible to take into account different 
seasonal load and weather variables. This increases the 

Table 3: Peak-load forecasting in January (winter) using 168 h-ahead forecast 

Day Actual Peak PE Peak PE Peak PE Peak PE 
load forecast (NN) forecast (FNN,) forecast (FNN,) forecast (FNN,) 

(NN) (FNN.) (FNN,) (FNN,) 

1 
2 
3 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 - 

(MW) 
2690 
2628 
2703 
2703 
2592 
2530 
2574 
2389 
251 3 
2500 
2450 
2551 
2763 
2603 
291 4 
2761 
251 4 
2543 
2435 
2496 
2551 
281 3 
2537 
2381 
2459 
2505 
2429 
2438 
2748 
2388 
21 75 
2539 

MAPE 

(MW) 
2534.5 
2556.0 
2610.8 
2610.8 
2651.4 
2616.5 
2503.5 
2433.2 
2433.1 
2353.8 
2324.3 
2620.1 
2953.9 
2531.9 
2761.6 
2894.6 
2389.6 
2697.4 
2494.7 
2463.8 
2456.6 
2886.4 
2382.0 
2279.8 
2540.6 
2575.4 
2500.7 
2281.2 
2839.0 
2513.8 
21 25.4 
2456.2 

5.78 
2.74 
3.41 
3.41 
-2.29 
-3.42 
2.74 

-1.85 
3.18 
5.85 
5.1 3 

-2.71 
-6.91 
2.73 
5.23 

-4.84 
4.95 

-6.07 
-2.45 
1.29 
3.70 
-2.61 
6.1 1 
4.25 

-3.32 
-2.81 
-2.95 
6.43 
-3.31 
-5.27 
2.28 
3.26 

3.87 

(MW) 
2578.4 
2531.8 
2640.0 
2640.0 
2641 .O 
2586.9 
251 2.0 
2430.1 
2434.6 
2352.8 
2332.6 
2502.0 
2944.8 
2534.0 
2800.6 
2878.1 
2389.3 
2675.7 
2401.2 
2481 .8 
2453.3 
2878.8 
241 2.4 
2281.2 
2537.0 
2573.6 
2478.3 
2336.1 
2808.7 
2480.7 
2128.9 
2461.1 

4.1 5 
3.66 
2.33 
2.33 

-1.89 
-2.25 
2.41 

-1.72 
3.1 2 
5.89 
4.79 
1.92 

-6.58 
2.65 
3.89 

-4.24 
4.96 
-5.22 
1.39 
0.57 
3.83 

-2.34 
4.91 
4.1 9 

-3.1 7 
-2.74 
-2.03 
4.1 8 
-2.21 
-3.88 
2.1 2 
3.07 

3.30 

(MW) 
2630.0 
2564.7 
2649.5 
2649.5 
2636.6 
2580.1 
2519.9 
2351.5 
2444.9 
2370.8 
2340.5 
2510.7 
2886.0 
2555.9 
2853.1 
2658.3 
2408.4 
2653.9 
2454.7 
2509.2 
2493.9 
2864.5 
2441.9 
2285.0 
2518.5 
2538.8 
2480.5 
2351 .O 
2808.2 
2481 .8 
21 98.9 
2476.3 

2.23 
2.41 
1.98 
1.98 

-1.72 
-1.98 
2.1 0 
1.57 
2.71 
5.17 
4.47 
1.58 

-4.45 
1.81 
2.09 
3.72 
4.20 
-4.36 
-0.81 
-0.53 
2.24 
-1.83 
3.75 
4.03 
-2.42 
-1.35 
-2.1 2 
3.57 
-2.1 9 
-3.93 
-1.10 
2.47 

2.61 

(MW) 
2742.2 
2571 .O 
2666.5 
2666.5 
2551 .O 
2480.7 
2628.8 
2354.8 
2449.7 
2378.5 
2360.1 
2519.6 
2874.1 
2649.6 
2972.3 
2660.2 
241 5.2 
2651 .8 
241 4.8 
2481.5 
2514.5 
2762.9 
2462.2 
2285.0 
2507.4 
2537.8 
2462.3 
2370.2 
2784.3 
2474.2 
21 59.3 
2489.2 

-1.94 
2.1 7 
1.35 
1.35 
1.58 
1.95 
-2.13 
1.43 
2.52 
4.86 
3.67 
1.23 

-4.02 
-1.79 
-2.00 
3.65 
3.93 

-4.28 
0.83 
0.58 
1.43 
1.78 
2.95 
4.03 

-1.97 
-1.31 
-1.37 
2.78 
-1.32 
-3.61 
0.72 
1.96 

2.29 

Iterations 2050 2300 1170 890 
ramired 
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Table 4: Average-load forecast in June (summer) using 24 h-ahead forecast 

Day 

- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
- 

Actual Average PAE Average PAE Average PAE Average PAE 
load forecast (NN) forecast (FNN,) forecast (FNN,) forecast (FNN,) 

(MW) (MW) (MW) 

(NN) (FNN,) (FNN,) (FNN,) 

1521 1527.8 -0.44 1506.5 0.95 
1531 
1473 
1336 
1285 
1433 
1406 
1403 
1428 
1431 
1301 
1235 
1418 
1408 
1421 
1447 
1440 
1352 
1305 
1430 
1383 
1414 
1423 
1406 
1267 
1221 
1397 
1401 
1403 
1411 

1508.3 
1454.4 
1365.3 
1261.7 
1433.2 
1420.4 
1378.3 
1404.5 
1468.5 
1280.6 
1257.5 
1409.9 
1401.4 
1407.2 
1467.8 
1424.4 
131 4.6 
1328.3 
1444.4 
1373.6 
1417.2 
1397.5 
1375.1 
1281.4 
1245.5 
1380.2 
1436.5 
1401.2 
1369.7 

1.48 
1.26 

-2.20 
1 .80 

-0.01 
-1.02 

1.76 
1.65 

-2.61 
1.57 

-1.82 
0.57 
0.47 
0.97 

-1.44 
1.08 
2.76 

-1.79 
-1.01 

0.68 
-0.23 

1.79 
2.20 

-1.14 
-2.01 

1.20 
-2.54 

0.1 3 
2.92 

1520.5 
1488.0 
1308.4 
1265.3 
1442.0 
1421.1 
1432.2 
1450.0 
1473.7 
1321.2 
121 0.5 
1429.2 
1434.4 
1434.4 
1436.1 
1435.6 
1335.9 
1327.7 
141 9.4 
1379.8 
1411.5 
1415.3 
1385.8 
1260.7 
1242.9 
1405.2 
1382.2 
1408.6 
1380.6 

0.69 
-1.02 

2.06 
1.53 

-0.63 
-1.10 
-2.08 
-1.54 
-2.98 
-1.55 

1.98 
-0.79 
-1.88 
-0.94 

0.75 
0.30 
1.20 

-1.74 
0.74 
0.23 
0.1 8 
0.54 
1.43 
0.50 

-1.79 
-0.59 

1.34 
-0.40 

2.1 5 

(MW) 
1526.5 
1516.3 
1457.8 
1361.8 
1299.0 
1436.0 
1415.8 
1382.8 
1406.1 
1397.7 
131 5.1 
1225.5 
1421.5 
1406.9 
141 5.9 
1453.3 
1439.3 
1358.2 
1290.1 
1439.7 
1370.1 
141 7.9 
1426.5 
1426.6 
1255.5 
1238.1 
1395.9 
1377.0 
1396.5 
1436.5 

-0.36 
0.96 
1.03 

-1.93 
-1.09 
-0.21 
-0.69 

1.44 
1.54 
2.33 

-1.09 
0.77 

-0.25 
0.08 
0.36 

-0.43 
0.05 

-0.46 
1.13 
0.68 
0.93 

-0.28 
-0.25 
-1.46 

0.91 
-1.40 

0.07 
1.71 
0.46 

-1 .81 

(MW) 
1528.7 
1525.7 
1486.2 
1356.1 
1270.0 
1433.7 
1415.3 
1388.8 
1448.3 
1402.3 
1292.5 
1244.4 
141 9.8 
1407.8 
141 8.8 
1437.2 
1441.5 
1358.7 
1298.0 
1425.9 
1390.3 
141 4.7 
1421.4 
1389.3 
1269.9 
1235.0 
1386.2 
1383.4 
1411.2 
1400.9 

-0.51 
0.35 

-0.90 
-1.50 

1.17 
-0.05 
-0.67 

1.01 
-1.42 

2.00 
0.65 

-0.76 
-0.1 3 

0.02 
0.1 5 
0.68 

-0.1 1 
0.49 
0.54 
0.29 

-0.53 
-0.05 

0.1 1 
1.19 

-0.23 
-1.15 

0.77 
1.26 

-0.59 
0.71 

- 
MAPE 1.42 1.19 0.87 0.67 

Iteration 1480 1800 81 0 650 
required 

Table 5:  Average-load forecasting in June (summer) using 168 h-ahead forecast 

Day Actual Average PE Average PE Average PE Average PE 
load forecast (NN) forecast (FNN,) forecast (FNN,) forecast (FNN,) 

(NN) (FNN,) (FNNJ (FNN,) 

(MW) ( M W  (MW) ( MW) ( M W  
1 1521 1558.6 -2.47 1550.2 -1.92 1542.9 -1.44 1538.2 -1.13 
2 1531 1558.9 -1.82 1555.3 -1.59 1551.8 -1.36 1550.6 -1.28 
3 1473 1436.0 2.51 1453.3 1.34 1452.7 1.38 1456.5 1.12 
4 1336 1409.3 -5.49 1393.2 -4.28 1388.2 -3.91 1364.9 -2.16 
5 1285 1244.1 3.18 1247.6 2.91 1250.8 2.66 1261.6 1.82 
6 1433 1409.4 1.65 1440.9 -0.55 1428.4 0.32 1434.6 -0.1 1 
7 1406 1377.5 2.03 1379.0 1.92 1385.3 1.47 1385.9 1.43 
8 1403 1441.2 -2.72 1437.5 -2.46 1435.3 -2.30 1431.1 -2.00 
9 1428 1484.1 -3.93 1472.8 -3.14 1471.8 -3.07 1448.7 -1.45 

10 1431 1469.6 -2.70 1447.6 -1.16 1447.0 -1.12 1416.5 1.01 
11 1301 1358.0 -4.38 1347.3 -3.56 1345.8 -3.44 1330.0 -2.23 
12 1235 1202.5 2.63 1208.2 2.17 1212.5 1.82 1221.7 1.08 
13 1418 1390.3 1.95 1402.0 1.13 1403.0 1.06 1432.0 -0.99 
14 1408 1394.9 0.93 1421.5 -0.96 1399.7 0.59 1411.0 -0.21 
15 1421 1484.4 -4.46 1465.3 -3.12 1453.7 -2.30 1451.8 -2.17 
16 1447 1482.3 -2.44 1478.5 -2.18 1473.2 -1.81 1463.8 -1.16 
17 1440 1402.7 2.59 1406.7 2.31 1412.1 1.94 1415.5 1.70 
18 1352 1308.5 3.22 1337.1 1.10 1357.7 -0.42 1358.1 -0.45 
19 1305 1269.2 2.74 1279.2 1.98 1290.0 1.15 1295.0 0.77 
20 1430 1404.0 1.82 1404.5 1.78 1406.3 1.66 1441.9 -0.83 
21 1383 1350.4 2.36 1406.4 -1.69 1363.2 1.43 1399.7 -1.21 
22 1414 1463.1 -3.47 1457.3 -3.06 1448.6 -2.45 1396.6 1.23 
23 1423 1371.5 3.62 1386.4 2.57 1393.0 2.11 1404.8 1.28 
24 1406 1359.5 3.31 1361.1 3.19 1372.1 2.41 1389.7 1.16 
25 1267 1219.4 3.76 1229.6 2.95 1237.6 2.32 1254.2 1.01 
26 1221 1256.7 -2.92 1247.6 -2.18 1241.6 -1.69 1236.1 -1.24 
27 1397 1372.7 1.74 1373.7 1.67 1384.6 0.89 1387.9 0.65 
28 1401 1373.1 1.99 1371.9 2.08 1379.7 1.52 1380.5 1.46 
29 1403 1414.4 -0.81 1391.1 0.85 1405.5 -0.18 1399.5 0.25 
30 1411 1359.6 3.64 1380.4 2.17 1374.9 2.56 1378.1 2.33 

MAPE 2.78 2.1 3 1.76 1.23 

Iterations 2650 2740 2480 1310 
reauired 
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number of rules and consequently the rule nodes in the 
hybrid model. The database used for this study comprises 
a 14-day period prior to the day of forecast; thus by 
using a larger database (say four weeks) and an increased 
number of load and weather parameters as input vari- 
ables, it is possible to obtain a more accurate and robust 
forecast for periods between one day and one week 
ahead. 

The authors have also performed extremely short-term 
predictions from 1 h to 6 h ahead over the next 24-h 
period using the hybrid models, and the results reveal a 
significant improvement in accuracy compared with 
those from 24 h-ahead forecasts. The main features and 
advantages of the hybrid model are: 

(i) it provides us with a general method of combining 
available numerical information and human linguistic 
information into a common framework; 

(ii) it requires much less construction time than a com- 
parable neural network; 

(iii) significant accuracy in predicting chaotic time- 
series models. 

7 Conclusions 

This paper presents three fuzzy-neural-network (FNN) 
models for time-series forecasting of electric load. The 
first model, FNN,, uses the fuzzy-membership values of 
the past load and weather parameters, and the output of 
the FNN, gives the class-membership values of the fore- 
cast load. The second and third models, FNN, and 
FNN, , introduce the low-level learning power of an arti- 
ficial neural network into a fuzzy expert system and 
provide high-level human-understandable meaning to the 
normal neural network. A hybrid learning scheme con- 
sisting of a self-organised-learning phase and a 
supervised-learning phase is used for training FNN, and 
FNN, . Also the Kalman-filter update equations in the 
supervised-learning phase of FNN, . give better con- 
vergence and accuracy than the gradient-descent back- 
propagation algorithm in the supervised-learning phase 
of FNN, . 
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9 Appendixes 

9.1 Appendix 7 
This Appendix gives the update equations for FNN, 
(shown in Fig. 3) using the backpropagation algorithm 

(a)  The weight-update equations for layer four is 

The error function E is given by 

E = ${eL&) - iLC(t)I2 (15) 

Since 

and using centroid-defuzzification method [lS] we obtain 

where 

w., = 1 for t = 1 

Therefore 

From eqn. 18, we obtain 

(b) Training the output membership functions at layer 
5 :  

where ‘1 is the learning rate. Now 
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Therefore, using eqns. 15 and 16 we obtain 

Similarly, 

where v 2  is the learning rate. Now 

aE a~ aiLc 
abij acLc ab, 

bi,C + 1) = bijt)  + v2{eLdt) - iLc ( t ) )  

- 

Therefore, using eqns. 15 and 16 we obtain 

(c) Training the input membership functions at layer 2: 
The error signal 64 at layer four is given by 

64 = {eL&) - cLc(t)) 

where (aij, bij) correspond to the output-term set. 
The error signal at layer three is found by performing 

the summation over the consequences of a rule node (i.e. 
layer four). Therefore 

s: = 1 64 

The adaptive rule for aij (layer 2) is derived as 

where v 3  is the learning rate. Now 

aE -(xi - Uij)2 2(Xi - U i j )  

--=d’[exp aa,, { bij }]{7} 
Also 

S’ = 1 s; 

a& + 1) = a&) - q3 6: [ exp { -(x;, ail2}] 

in similar way as for eqn. 27. Therefore 

Similarly, the adaptive rule for bij(layer 23 is d u i v d  as 

9.2 Appendix 2 
This Appendix gives the update equations for FMNB 
using the linear Kalman-filter equations 

(a) The weight-update equation for layer four is 

where ( a E / 8 w j )  is given by cqn 19 and K&) is the 
Kalman gain and is given by 

where x x f )  corresponds to the previous layer. 

matrix R;’(t) are updated nsmg 
The forgetting factor f ,  and the in-ver.se eonvariance 

f# %- 1) =fof i tY + U  -A)  
R j l ( t  + 1) = lR j1 ( t )  - Kjt‘’T{t)RY’(t)’]K 

(by The update eqaanaiisns for U,, and bS3 

f32) 

:(W 
laym fiye me 

where (aElaa,,) is gwen by eqn 21.. 

where (c?E/ab,,) is given by eqn 24 

are 
(c) The update equatlons for a,, and h,, at layer Whvo 

where (CE/Ba,,) i s  p e n  by eqn. 29. $milafly, 

where 8: is given by eqn. 30 
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