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Abstract: Three computing models, based on the
multilayer perceptron and capable of fuzzy classi-
fication of patterns, are presented. The first type of
fuzzy neural network uses the membership values
of the linguistic properties of the past load and
weather parameters and the output of the network
is defined as fuzzy-class-membership values of the
forecast load. The backpropagation algorithm is
used to train the network. The second and third
types of fuzzy neural network are developed based
on the fact that any fuzzy expert system can be
represented in the form of a feedforward neural
network. These two types of fuzzy-neural-network
model can be trained to develop fuzzy-logic rules
and find optimal input/output membership values.
A hybrid learning algorithm consisting of
unsupervised and supervised learning phases is
used to train the two models. Extensive tests have
been performed on two-years of utility data for
generation of peak and average load profiles 24
hours and 168 hours ahead, and results for typical
winter and summer months are given to confirm
the effectiveness of the three models.

1 Introduction

The application of artificial-neural-network- (ANN) and
fuzzy-logic-based decision-support systems to time-series
forecasting has gained attention recently [7-12]. ANN-
based load forecasts give large errors when the weather
profile changes very fast. Also, extremely slow training or
even training failure occurs in many cases owing to diffi-
culties in selecting proper structures of the neural-
network paradigm being used, and owing to the errors in
associated parameters such as learning rates, activation
functions etc. which are fundamental to any back-
propagation neural network. On the other hand, the
development of a fuzzy decision system (fuzzy expert
system) for load forecasting requires detailed analysis of
data and the fuzzy-rule base has to be developed
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heuristically for each season. The rules fixed in this way
may not always yield the best forecast. The shortcomings
of the neural-network paradigm can be partly remedied
by the recognition of the fact that the learning speed and
accuracy of an ANN may often be enhanced by utilising
the knowledge of neural-network expertise in a specific
application. This human knowledge can be encoded by
fuzzy expert systems, which are integrated into the fuzzy
neural network (FNN).

The present work is aimed at achieving a robust load
forecast with much improved accuracy using three differ-
ent models of FNNs. For the neural network to be called
a FNN, the signal and/or the weights should be fuzzified
[14]. The first type of FNN, abbreviated FNN |, is based
on the multilayer perceptron, using the backpropagation
algorithm. The input vector consists of the membership
values of linguistic properties of the past load and
weather parameters and the output vector is defined in
terms of fuzzy-class-membership values of the forecast
load. The second and third types of FNN, abbreviated as
FNN,; and FNN,, are based on the argument that any
fuzzy expert system employing one block of rules may be
approximated by a mneural network (feedforward,
multilayered). The input vector to FNN, and FNNN, con-
sists of differences in weather parameters between the
present and forecast instant. The output of the FNN,
and FNNj gives the load correction which, when added
to the past load, gives the forecast load. The learning
algorithm for FNN, and FNN; combines unsupervised
and supervised learning procedures to build the rule
nodes and train the membership functions. The super-
vised learning procedure for FNN, uses the gradient-
descent backpropagation algorithm [5] for finding the
optimum weights and membership functions, while for
FNN, the supervised learning procedure comprises of
Kalman-filter-based algorithm [16] which is similar to
the least-square adaptive techniques. The least-square
adaptive filtering techniques are known to have rapid
convergence properties over the backpropagation algo-
rithm. In this paper FNNs using fuzzy weights are not
considered.

A few examples of peak-load forecasting and average-
load forecasting using the above techniques for a typical
utility with 24-hour and 168-hour lead times in the
months of winter and summer are presented, and results
obtained using the two FNN models are compared.

The authors acknowledge funds from the US
National Science Foundation (NSF grant INT-
9209103 and INT-9117624).
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2 Type 1: fuzzy neural network (FNN,) for load
forecasting

The network model for FNN, is shown in Fig. 1. The
FNN, model is similar to ANN with the input and

output class
membership
function for
forecast load

L )L }
layer-1 layer-2
(input-membership function)  (hidden neurons)

Fig. 1 Type 1 fuzzy neural network (FNN ) for load forecasting
S = small, M = medium, L = large
P = load, Q = temperature, H = humidity, t = iteration, W,; = weights

output parameters fuzzified. This is very important for
load forecasting since there are so many fuzzy factors
which are difficult to characterise by a number. An
instance of this could be weather conditions such as tem-
perature, humidity, cloud cover etc. The FNN, clusters
the input parameters such as load of ith day, maximum
and minimum temperatures and humidities of the jth day
and (i + n)th day into fuzzy spaces for forecasting load
on the (i + n)th day (n is the lead time for the load fore-
cast, i.e. n = 24 for 24 h ahead forecast, n = 168 for 168 h
ahead forecast etc.). The load, temperature and humidity
are classified into three categories, i.e. small, medium and
large. The output nodes of FNN, represents the class-
membership function of the forecast load. The classi-
fication of input and output linguistic variables into fuzzy
spaces involves an increase in the amount of computation
required compared with the ANN. This is suitably offset
by the fact that the conventional crisp backpropagation
algorithm may not necessarily converge when the train-
ing patterns are nonseparable with overlapping fuzzy
classes. Further, in the proposed FNN, the error back-
propagated has more weight for nodes with higher mem-
bership values and hence induces greater weight
corrections for that class. Thus the ambiguity in model-
ling the uncertain vectors is automatically reduced.

In many cases it is convenient to express the member-
ship function of a fuzzy subset in terms of a standard
nonlinear function. The Gaussian membership function is
used for the input and output linguistic parameters of the
FNNs in this study:

2
s 0, ) = exp {2 )
Here, a and b are the centre and width of the Gaussian
function, respectively.

Fig. 2 shows the membership functions for peak load,
maximum temperature and maximum humidity in
winter. The backpropagated error is computed with
respect to the desired class-membership values for the
output and each weight is updated using the gradient-
descent backpropagation algorithm [5]. The input layer
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consists of nodes equal to the product of the input
linguistic-pattern points and the fuzzy-term sets (i.. three
term sets for each pattern point). The output layer con-
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Fig. 2 Peak-load, maximum-temperature and
membership functions using FNN | in winter

S = small, M = medium, L = large
a Peak load

b Maximum temperature

¢ Maximum relative humidity

maximum-humidity

sists of three terms sets for the forecast load. The number
of hidden nodes is fixed empirically during training.

After the training phase is over, the input consists of
load, temperature and humidities of the ith and the fore-
cast temperature and humidity values of the (i + n)th
day. The output of FNN, gives the class-membership
values of forecast load of the (i + n)th day. The final fore-
cast load is obtained by using the centre-of-gravity defuz-
zification technique [13-15].
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3 Type 2: fuzzy neural network (FNN,) for load
forecasting

An alternative to the neural-network-based load forecast
is the expert-system approach. A fuzzy expert system for
load forecasting consists of a collection of fuzzy
IF-THEN rules showing, the relationship between load
and weather variables. One of the difficulties with the
fuzzy expert system is the rule matching and composition
time, apart from the time-consuming process of adapting
the rules. The neural network eliminates the rule-
matching process and stores the knowledge in the link
weights. The decision signals can be output immediately
after the input data are fed in. Fig. 3 shows the proposed

layer-1 layer-2 layer-3 layer-4 layer-5
(input  (input (rule nodes) (output term (output linguistic
bnguistic term nodes) nodes)
nodes) nodes)
Fig.3  Type 2 and type 3 fuzzy neural network (FNN, and FNN ) for

load forecasting

Af = differential temperature
AH = differential humidity

t = iteration number

W, = weights

é, = actual load correction
¢, = desired load correction

FNN, to model the fuzzy expert system in the form of an
FNN using the ANN architecture. The FNN, clusters
the differential temperatures and humidities of the ith
and (i + n)th day into fuzzy-term sets. The output of
FNN, is the final crisp-load correction (&,). Hence the
forecast load on the (i + n)th day [P {i + n)] is given by

Pi+ m) = P() + &,e00) @

where n is the lead time for the forecast.

FNN, has a total of five layers. Nodes at layer one are
the input linguistic nodes. Layer five is the output layer
and consists of two nodes [one is for the actual load cor-
rection (&,,) and the other is the desired load correction
(e,c)]- Nodes at layers two and four are term nodes
which act as membership functions to represent the term
sets of the respective linguistic variables. Each node at
layer three represents the preconditions of the rule nodes,
and layer-four links define the consequences of the rules.
The functions of each layer is described as follows:

(a) layer 1: the nodes in this layer just transmit the
input feature x;, i = 1, 2 to the next layer;

(b) layer 2: each input feature x;, i = 1, 2 is expressed
in terms of membership values ui(a,;, b;), where i corres-
ponds to the input feature and j corresponds to the
number of term sets for the linguistic variable x;. The
membership function g/, uses the Gaussian membership
function given in eqn. 1;

(c) layer 3: the links in this layer are used to perform
precondition matching of fuzzy-logic rules. Hence the
rule nodes perform the product operation (or AND

IEE Proc.-Gener. Transm. Distrib., Vol. 142, No. 5, September 1995

operation):
tr, = M, 3
where R, =1, 2, ..., n. Rp corresponds to the rule node

and n is the maximum number of rule nodes. However, if
the fuzzy AND operation is used

Hge = min {u} @
(d) layer 4: the nodes in this layer have two operations,
ie. foreward and backward transmission. In forward-
transmission mode, the nodes perform the fuzzy OR

operation to integrate the fired rules which have the same
consequence

M=iﬁ &)

where p corresponds to the links terminating at the node.
In the backward-transmission mode, the links function
exactly the same as the layer-two nodes.

(e) layer 5: there are two nodes in this layer for obtain-
ing the actual and desired output-load correction,
respectively. The desired output-load correction (e.c) is
fed into the FNN, during learning whereas the actual
load cotrection (é,c) is obtained by using the centroid
defuzzification method.

3.1 Hybrid learning algorithm for FNN,

The hybrid learning scheme consists of unsupervised- and
supervised-learning phases. In the unsupervised phase,
the initial membership functions of the input and output
linguistic variables are fixed and an initial form of the
network is constructed. Then, during the learning
process, some nodes and links of this initial network are
deleted or combined to form the final structure of the
network. In the supervised-learning phase, the input and
output membership functions are optimally adjusted to
obtain the desired outputs.

3.1.1 Unsupervised-learning phase
Given the training input data x(t), i = 1, 2, the desired
output-load correction e {t) and the fuzzy partitions
| ], we wish to locate the membership functions (i.e. a;;
and b;)) and find the fuzzy-logic rules.

Kohonen’s feature-maps algorithm [13] is used to find
the values for a;; and b;;:

||X(t) - ai, dasesr(t)” = 1min {”xl'(t) - aii(t)u} (6)
Sjst

ai, closesl(t + 1) = ai, clnses:(t) + ﬂ(t){x.(t) - ai,clasest(t)} (7)

ai{t+ 1) = aft) fora; # & cipsest 8)

where n(t) is the monotonically decreasing learning rate
and t is the number of term sets for the linguistic variable
X;.
This adaptive formulation runs independently for each
input linguistic variable x;.
The width b;; is determined heuristically at this stage
[13] as follows:
a; ;—a;
bij = M %)
r
where » is an overlap parameter. After the parameters of
the membership functions have been found, the weights
in layer four are obtained by using the competitive-
learning algorithm [6] as follows:

W,; = LIYLI; — W) (10)

where LI} serves as the win-loss index of the rule node at
layer three and LI{ serves as the win-loss index of the jth
term node at layer four, respectively.
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After the competitive learning through the whole
training data set, the link weights at layer four represent
the strength of the existence of the corresponding rule
consequences. If a link weight between a rule node and
the term node of the output linguistic node is very small,
all the corresponding links are deleted, meaning that this
rule node has little or no relation to the output.

Once the consequences of rule nodes have been deter-
mined, the rule combination is performed to reduce the
number of rules in the following manner. The criterion
for the choice of rule nodes is

(i) they have the same consequences;

(ii) some preconditions are common to all the rule
nodes in this set; and

(iii) the union of other preconditions of these rule
nodes composes the whole term set of some input linguis-
tic variables.

The rule nodes which satisfy these criteria are replaced by
a new rule node with common preconditions.

3.1.2 Supervised-learning phase
Once the fuzzy-logic rules have been found, supervised
learning is used to find the optimum weights and the
input and output membership functions by using the
gradient-descent backpropagation algorithm. The de-
tailed steps are given in Appendix 9.1.

The hybrid learning procedure is summarised in Fig.
4. The convergence speed of the supervisory-learning

find centres and widths of
membership functions by Kohonen's
clustering

unsupervised find weights by competitive

learning learning
'T:hcmge the fuzzy logic rules|
- |
S:Jgae::;; tind optimal input/output membership functions
and weights using backpropagation algorithms
Fig. 4  Flowchart of propased hybrid learning algorithm for FNN,

scheme for FNN, is found to be superior to that of the
supervisory-learning scheme for FNN,, since the
unsupervised-learning process for FNN, had carried out
much of the learning process in advance. The con-
vergence speed of the supervised-learning process can be
further improved by solving the weight-update equations
at layer three and the input- and output-membership
functions at layers one and two by linear Kalman-filter
equations [16].

4 Type 3: fuzzy neural network (FNN,) for load
forecasting

Referring to Fig. 1, the tuning of the Gaussian member-
ship function at layers two and four (q;;, b;)) is similar to
the weight-update equations at layer three. The
unsupervised-learning phase of the FNN; model is the
same as for the FNN, model. The supervised-learning
phase of the FNN; model uses the linear Kalman-filter
equations for updating the weights and the membership
function. Unlike the backpropagation technique, this
algorithm assumes that the estimated weight matrix is
nonstationary and hence will allow the tracking of time-
varying data such as those of load forecasting.

This algorithm defines locally a gradient based on
present and past data at each node, and updates the
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weights of each node using the linear Kalman-filter equa-
tions so as to bring this gradient identically to zero
whenever an update is made. Performing the update thus,
and defining the gradient in this manner, ensures that
maximum use is made of available information.

The gradient for the linear combiner at each node is
defined as

G=RW -C (11)

Here R is the autocorrelation matrix for each layer and is
calculated as

NP
R= ) FYV "x,x, (12)
np=1
and C is the crosscorrelation matrix and is given by
¥ NP T
C= 3 f7d,x, (13)
np=

where NP denotes the total number of patterns and ff
denotes the forgetting factor. d,, and x,, are the summa-
tion output and the output of the nonlinearity (Gaussian
membership function) for the layer-two and layer-five
nodes, respectively. As the layer-four nodes contain no
nonlinearity term, therefore d,, = x,,, .

The weight vector which makes G = RW — C zro is
the solution to the equations. The detailed weight-update
algorithm using the linear Kaiman filter is given in
Appendix 9.2.

5 Implementation results

To evaluate the performance of the FNN models, load
forecasting is performed on typical utility data. The
models ANN, FNN,, FNN, and FNN; are tested on
two years of utility data for generating peak and average
load profiles and some of the results are given in the sub-
sequent subsections. In References 7-9 it has been shown
that ANN gives the best prediction and accuracy com-
pared with conventional approaches. Therefore in this
paper the results of FNN,, FNN, and FNN, are com-
pared with those of the ANN approach.

The training sets are formed separately for each of the
seven day types (ie. Tuesdays through Thursdays,
Mondays, Fridays, Saturdays, Sundays, holidays). The
selection of training patterns is given in Reference 9.

5.1 Peak-load forecasting
For peak-load forecasting, the following training data are
used for ANN and FNN;,:

Input pattern: P, (i), @), Hpodi), ©L.(i + 1),
Hpuli + 1)

Qutput pattern: P, (i +n) and p{P,,{i + n)} for
ANN and FNN,, respectively.

where P, ® and H stand for load, temperature and
humidity, respectively. The superscript f denotes the fore-
cast values for © and H; n is the lead time for forecast
(n = 24 for 24 h-ahead forecast, n = 168 for 168 h-ahead
forecast).

The forecast value P, (i + n) for FNN, is obtained
from class-memberships values using the defuzzification
procedure given in Reference 15.

For FNN, and FNN,, the training patterns used are:

Input pattern: A®,,,.{i. i + n) and AH,, (i, i + n)

Output pattern: e; (i), the desired load correction

Here again, the weather variables used for the (i + njth
day are the forecast values. The P, (i + n) for FNN,
and FNN,; are obtained using eqn. 2.

1EE Proc.-Gener. Transm. Distrib., Vol. 142, No. 5, September 1995



Table 1 gives the membership functions learned using
FNN, for 24 h-ahead peak-load forecasting in winter.
For example, rule 0 is interpreted as

Table 1: Learned fuzzy logic rules for 24 h-ahead peak-load
forecasting using FNN , in winter

Rule Term sets
Preconditions Consequence
A0, 00 i+t1)  AH, (it} é,..0)
0
1
2
3
4
5
6
7
8
9
10
11

DOV N NN AN AEPBPWWWNNNNN 2222200
N=OChRWON—-ORPWNWN=BRWN_L,O_MIN2OPRW
OC=2 =20 —2=2NW_0NRAENYDINNOOD IO

NN RNNN = o b b b b
B WN=O0OOOLdOONRWN

RO: IF A®
€ cis term 7.

is term O and AH,,,, is term 3 THEN

max

Fig. 5 gives the membership functions learned for FNN,
after the first (unsupervised-learning) and second
(supervised-learning) phases. Fig. 6 gives the plot of mean
absolute percentage errors (MAPEs) against the number
of iterations for the ANN, FNN,, FNN, and FNN,
models, respectively. The results in Figs. 5§ and 6 were
obtained for 24 h-ahead peak-load forecasting in winter.

From Fig. 6 we see that FNN, gives a extremely fast
rate of convergence followed by FNN,, ANN and
FNN,, respectively. The linear Kalman-filter equations
and the variable-forgetting factor used for the training of
FNN;, are instrumental in driving the MAPE low during
the first few hundred iterations until the bias caused by
the initial parameters, arbitrarily chosen, is eliminated.
Also the convergence speed of FNN; is found to be
slower than that of ANN, even though it is trained with
the same backpropagation algorithm, because of the
increased amount of computation involved in classifying
the input and output of FNN, into fuzzy-term sets, hence
requiring a greater number of weight updates. However,
FNN, converged to a lower MAPE compared with
ANN.

Tables 2 and 3 give the 24 h- and 168 h-ahead peak-
load-forecastig results, the number of iterations for con-
vergence and the MAPEs for the month of January
(winter) using the ANN and three hybrid models.

From Tables 2 and 3, we see that FNN, gives a very
accurate prediction, followed in accuracy by FNN,,
FNN, and ANN, respectively. Also we find that the
168 h-ahead-prediction results are comparable with the

Table 2: Peak-load forecasting in January (winter) using 24 h-ahead forecast

Day Actual Peak PE Peak PE Peak PE Peak PE
load forecast (NN) forecast (FNN,) forecast (FNN,) forecast (FNN,)
(NN) (FNN,) (FNN,) (FNNj)
(MW)  (MW) (MW) (MW) (MW)
1 2690 2556.6 496 25924 3.63 2659.3 114 27332 -1.61
2 2628 2547.0 308 27295 -3.86 25681.7 1.76 26681 -152
3 2703 2676.8 0.97 2674.5 1.06 2681.0 0.81 26925 0.39
4 2592 26026 -0.41 25923 -0.01 2604.2 -047 2566.3 0.99
5 25630 25476 -0.69 2507.0 0.9 2517.2 0.51 25426 -0.50
6 2574 25781 -0.16 26963 -0.83 25811 -027 25346 1.53
7 2389 23820 0.29 24009 -0.50 24240 -147 24358 -1.96
8 2513 25346 -0.86 24878 1.00 2496.3 066 25281 -0.60
3 2500 23940 4.24 2396.3 415 25948 -379 2566.9 -268
10 2450 2381.1 2.81 2406.1 1.80 24830 -135 24275 0.9
11 2551 25139 1.46 2547.0 0.16 25285 0.84 25588 -0.34
12 2763 2869.2 -3.85 28500 -—3.15 28457 -289 28074 -161
13 2603 25442 2.26 2581.0 0.85 26096 -025 26198 -064
14 2914 2783.1 450 2987.0 -250 2883.7 1.04 2909.9 0.14
15 2761 28450 -3.05 2719.0 183 27545 024 27408 0.73
16 2514 24354 3.13 25885 -2.97 25627 -194 24769 1.47
17 2543 26482 -4.14 26064 -250 25272 062 25659 -0.90
18 2435 24988 -262 24889 -2.21 24743 -161 24422 -0.30
19 2496 2513.7 -0.72 24934 0.10 24806 0.21 2501.8 -023
20 2551 24856 2.56 2524.0 1.06 25936 -167 25729 -086
21 2813 28819 -245 2879.7 -2.37 28318 -067 28115 0.05
22 2537 24359 3.99 2483.0 246 25827 -1.80 25598 -~0.90
23 2381 23105 2.96 2324.0 239 23267 228 24223 -174
24 2459 2533.8 -3.04 2448.7 042 24515 0.31 2437.0 0.89
25 2505 2509.3 -0.17 2487.2 0.7 25206 -062 25121 -0.28
26 2429 2506.8 -3.20 2450.2 -0.87 23812 197 23845 1.83
27 2438 23291 447 2367.4 2.89 24884 -207 2396.0 1.72
28 2748 27806 -1.19 2786.1 1.39 27619 -051 27416 0.23
29 2388 25029 -4.82 23341 226 23580 126 24216 -1.41
30 2175 22115 -168 22146 -182 21489 120 22097 -1.60
31 2539 2480.4 2.31 24906 1.90 25220 067 25227 0.64
MAPE 2.48 1.74 1.19 1.01
iterations 1100 1940 700 490
required

1EE Proc.-Gener. Transm. Distrib., Vol. 142, No. 5, September 1995

539



results obtained for 24 h-ahead predictions as the load
forecasting is performed as one-step process and hence
the forecast error for past days do not add up to the final
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Fig. 6

a Maximum temperature difference {after unsupervised learning)
b Maximum temperature difference (after supervised learning)
¢ Maximum relative-humidity difference (after unsupervised learning)

forecast. However, as the lead time is increased to 168,
the forecast errors for four days in the month of January
using FNN; exceeded 4%. As the main purpose of this
paper is to make a comparative assessment between
FNNs and ANN, no attempt is made to reduce the fore-
cast errors further.

5.2 Average-load forecasting
For average-load forecasting, the following training data
are used for ANN and FNN,:

Input pattem: Pav(i)’ ®max(i)’ ®min(i)’ Hmax(i)’ Hmin(i)v
®£ax(i + n)! ®£un(l + n)’ H{n‘ax(” + n)s Him(l + n)

Output pattern: P, (i + n) and u{P,(i + n)} for ANN
and FNN |, respectively,
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where n is the lead time for the forecast as given in
Section 5.1. The forecast load from FNN; is obtained in
a manner similar to that in Section 5.1.

membership grade
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temperature difference, deg F

membership grade

humidity difference, %
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0.4

membership grade

02~

0 1
-300 -180 -60 60 180 300

load difference, MW

Learned membership function for peak-load forecasting in winter using FNN ,

d Maximum relative-humidity difference {after supervised learning)
e Maximum peak-load difference (after unsupervised learning)

f Maximum peak-load difference (after supervised learning)

For FNN, and FNNj,, the training patterns used are

Input pattern: A®,,..(i, i + n), A®, (i, i + n), AH,, (i,
i+n), AH .(i,i+ n)

Output pattern: e; (i), the desired load correction

The P,f(i + 1) for FNN, and FNN; is obtained using
eqn. 2.

For the average-load forecast also, the forecast tem-
perature and humidity values are used for the day of the
forecast.

Table 4 presents the average-load-forecasting results,
number of iterations for convergence, PEs and MAPEs
for the ANN, FNN,, FNN, and FNN; models, respect-
ively, for the month of June using 24 h-ahead predictions.
From these results we note the improved performance of

{EE Proc.-Gener. Transm. Distrib., Vol. 142, No. 5, September 1995



the FNN; model in terms of faster convergence and
mmproved overall accuracy, followed by the FNN,,
FNN, and ANN models, respectively.

MAPE

Axi a

1200

[}
C\ 400 800 1600 2000 2400

number of iterations

Fig. 6 Comparison of mean absolute percentage error against iteration
number, 24 h-ahead forecast in January {(winter)

——— ANN
— FNN,
FNN,
FNN,

The one-week-ahead average-load forecast is also
obtained for the month of June using the above fore-
casting models, and Table 5 presents these results. The
Kalman-filter-based load-forecasting model takes fewer
iterations and produces an accurate forecast compared

with the other models. It is further observed that the
errors in the average-load forecast are comparatively
much smaller than for the peak-load forecast.

6 Discussion

The proposed hybrid fuzzy-neural-network models are
found to be very powerful in providing an accurate load
forecasting. Although the results for two seasons of the
year are presented in this paper for validating the effect-
iveness of this approach, extensive tests have been con-
ducted for other seasons, Sundays, holidays and special
days of the year. From the results presented in this paper,
it can be observed that significant accuracy can be
achieved for 24 h-ahead hourly load forecasts and the
PEs can be less than 1. However, the PEs increase for
peak-load forecasts and will remain less than 2. If the
lead time increases to one week, the Kalman-filter-based
hybrid model yields a PE of around 2 for the average-
load forecast and around 3 for the peak-load forecast.
Further, the results presented in the Table also reveal the
superiority of the Kalman-filter-based hybrid-forecasting
model over the ANN and other fuzzy-neural-network
forecasting models in terms of speed of convergence,
MAPE and maximum percentage error.

The accuracy of the hybrid models can be further
enhanced by choosing a greater number of fuzzy overlap-
ping sets for fuzzification of input variables instead of the
three used for this application. Also, the choice of mem-
bershp function is flexible to take into account different
scasonal load and weather variables. This increases the

Table 3: Peak-load forecasting in January (winter) using 168 h-ahead forecast

Day Actual Peak PE Peak PE Peak PE Peak PE
load forecast (NN) forecast (FNN,) forecast (FNN,) forecast (FNN,)
(NN) (FNN,) {FNN,) {FNN,)
(MW} (Mw) (MW) (MW) (MW)
1 2690 25345 5.78 25784 415 26300 223 27422 -194
2 2628 2556.0 274 2531.8 366 2564.7 24 2571.0 217
3 2703 26108 341 26400 233 26495 198 26665 1.35
3 2703 26108 341 2640.0 233 26495 1.98 26665 1.35
4 2592 26514 -229 26410 -189 26366 -1.72 2551.0 1.58
5 2530 26165 -342 258689 -225 25801 -198 24807 1.95
6 2574 25035 274 25120 241 25199 210 26288 -213
7 2388 24332 -1.85 24301 -172 23515 1.57 23548 1.43
8 2513 24331 3.18 24346 312 24449 2.7 24497 252
9 2500 23538 585 23528 589 23708 5.17 23785 4.86
10 2450 23243 513 23326 479 23405 4.47  2360.1 3.67
11 255% 26201 -271 2502.0 192  2510.7 158 25196 1.23
12 2763 29539 -6.91 29448 -658 28860 -4.45 28741 -402
13 2603 25319 273 25340 265 25659 1.81 264986 -1.79
14 2914 27616 5.23 2800.6 389 28531 2,09 29723 -200
16 2761 28946 -484 28781 -424 26583 372 2660.2 3.65
16 2514 2389.6 495 23893 496 24084 420 24152 393
17 2543 26974 -6.07 26757 -522 26639 -436 26518 -428
18 2435 24947 -245 24012 1.39 24547 -081 24148 0.83
19 24936 24638 1.29 24818 057 25092 -053 24815 0.58
20 2551 24566 3.70 24533 383 24939 224 25145 143
21 2813 28864 -261 28788 -234 28645 -183 27629 1.78
22 2537 23820 611 24124 4.91 2441.9 3.756 2462.2 295
23 2381 22798 425 22812 419 22850 403 22850 4.03
24 2459 25406 332 2537.0 -317 26185 -~242 25074 -197
25 2505 25754 -281 25736 -274 25388 -135 25378 -1.31
26 2429 25007 -295 24783 -203 24805 -212 24623 -1.37
27 2438 22812 6.43 2336.1 418 2351.0 3,57 23702 278
28 2748 28390 -3.31 28087 -2.21 2808.2 -219 27843 -1.32
29 2388 25138 -527 24807 -388 24818 ~3.93 24742 -361
30 2175 21254 228 21289 212 21989 -110 21593 0.72
31 25638 2456.2 326 24611 3.07 24763 247 24892 1.96
MAPE 3.87 3.30 2.61 229
Iterations 2050 2300 1170 890
required
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Table 4: Average-load forecast in June (summer) using 24 h-ahead forecast

Day Actual Average PAE Average PAE Average PAE Average PAE
load forecast (NN) forecast (FNN,) forecast (FNN,) forecast (FNNj)
(NN) (FNN,) (FNN,) (FNN,})

(MW)  (MW) (MW) (MW) (Mw)

1521 15278 -044 1506.5 0.95 152656 -0.36 1528.7 -0.51
1531 1608.3 148 15205 0.69 1516.3 0.96 16256.7 0.35
1473 1454 .4 1.26 1488.0 -1.02 1457.8 1.03 1486.2 -0.90
1336 1365.3 -220 13084 2.06 1361.8 -1.93 1356.1 -1.50
1285 1261.7 180 12653 1.63 12990 -1.09 1270.0 117
1433 14332 -001 14420 -0.63 1436.0 -0.21 1433.7 -0.05
1406 1420.4 -1.02 14211 -1.10 14158 -0.69 1416.3 -0.67
1403 1378.3 1.76 14322 -208 1382.8 1.44 1388.8 1.01
1428 14045 165 1450.0 -1.54 1406.1 1.64 1448.3 -1.42
1431 14685 -261 14737 -298 1397.7 2.33 1402.3 2.00
1301 1280.6 1657 13212 -1.565 13151 -1.09 1292.6 0.65
1235 12675 -182 12105 1.98 12258 077 12444 -0.76
1418 1409.9 057 1429.2 -0.79 142158 -0.25 1419.8 -0.13
1408 1401.4 047 14344 -1.88 1406.9 0.08 1407.8 0.02
1421 1407.2 097 14344 -0.94 14159 0.36 1418.8 0.15
1447 1467.8 -—-1.44 14361 0.75 1453.3 -043 1437.2 0.68
1440 1424 .4 1.08 1435.6 0.30 1439.3 0.05 14415 -0.11
1352 13146 276 13359 1.20 1368.2 -046 1358.7 0.49
1306 13283 -1.79 1327.7 -1.74 1290.1 113 1298.0 0.54
1430 14444 -1.01 14194 0.74 1439.7 0.68 14259 0.29
1383 13736 0p8 13798 0.23 13701 0.93 1390.3 -053
1414 14172 -0.23 14115 0.18 14179 -028 14147 -0.05
1423 1397.5 179 14153 0.54 14265 -025 1421.4 011
1406 13751 220 13858 1.43 14266 -1.46 1389.3 1.19
1267 12814 -1.14 1260.7 0.50 12565 0.91 12699 -0.23
1221 12465 -2.01 12429 -1.79 12381 -1.40 12350 -1.15
1397 1380.2 1.20 14052 -0.59 1395.9 0.07 1386.2 0.77
1401 1436.5 -254 1382.2 1.34 13770 1.7 1383.4 1.26
1403 1401.2 0.13 1408.6 -0.40 1396.5 0.46 14112 -0.59
1411 1369.7 292 1380.6 215 14365 -1.81 1400.9 0.71

WRRNNNMRNRNONNORND = 2 230
CWBRNOTRWN_OQOVONOIORARWNS20OQONOOAWN=

MAPE .42 1.19 0.87 0.67
Iteration 1480 1800 810 650
required

Table 5: Average-load forecasting in June (summer) using 168 h-ahead forecast

Day Actual Average PE Average PE Average PE Average PE
load forecast (NN) forecast (FNN,) forecast (FNN,} forecast (FNN,;)
(NN) (FNN,) (FNN,) (FNN,)
(MW)  (MW) (MW) (MW) (MW)
1 1521 15586 —-2.47 1550.2 -1.92 15429 -144 15382 -1.13
2 1531 15589 -1.82 15553 -159 15618 -1.36 15506 -—1.28
3 1473 143690 251 1453.3 1.34 14527 1.38 1456.5 112
4 1336 14093 -549 13932 -428 13882 -39 13649 -2.16
5 1285 12441 3.18 12476 291 1250.8 266 1261.6 1.82
6 1433 14094 1.65 14409 -055 14284 032 143486 -011
7 1406 13775 2.03 1379.0 1.92 13853 1.47 1385.9 1.43
8 1403 14412 -272 14375 -246 14353 -230 14311 -200
9 1428 14841 —-3.93 14728 -3.14 14718 -3.07 14487 -1.45
10 1431 14696 -2.70 14476 -1.16 14470 -1.12 14165 1.01
11 1301 1358.0 -4.38 13473 -356 13458 -344 13300 -223
12 1235 12025 2.63 1208.2 217 121258 1.82 12217 1.08
13 1418 13903 1.95 14020 113 1403.0 1.06 14320 -0.99
14 1408 1394.9 0.93 142156 -096 1399.7 0.59 14110 -021
15 1421 14844 -446 14653 -3.12 14537 -230 145618 -217
16 1447 14823 -2.44 14785 -218 14732 -1.81 14638 -1.16
17 1440 14027 259 1406.7 2.31 14121 1.94 14155 1.70
18 1352 13086 3.22 13371 110 13577 -042 13581 -045
19 1305 1269.2 274 12792 1.98 1290.0 115 1285.0 0.77
20 1430 1404.0 1.82 14045 178 1406.3 166 14419 -0.83
21 1383 13504 236 14064 -169 13632 1.43 13997 -1.21
22 1414 14631 -3.47 14573 -3.06 14486 -245 1396.6 1.23
23 1423 137156 362 13864 257 13930 211 1404.8 1.28
24 1406 13595 3.31 136141 319 13721 2.4 1389.7 1.16
25 1267 12194 376 12296 295 123786 232 12542 1.01
26 1221 1266.7 -~292 12476 -218 12416 -169 12361 -1.24
27 1397 13727 1.74 13737 167 13846 0.89 13879 0.65
28 1401 13731 199 13719 208 13797 1562 13805 1.46
29 1403 14144 -~081 13911 085 14055 -0.18 13995 0.25
30 1411 1359.6 3.64 13804 217 13749 2566 13781 233
MAPE 2.78 213 1.76 1.23
Iterations 2650 2740 2480 1310
required
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number of rules and consequently the rule nodes in the
hybrid model. The database used for this study comprises
a 14-day period prior to the day of forecast; thus by
using a larger database (say four weeks) and an increased
number of load and weather parameters as input vari-
ables, it is possible to obtain a more accurate and robust
forecast for periods between one day and one week
ahead.

The authors have also performed extremely short-term
predictions from 1h to 6 h ahead over the next 24-h
period using the hybrid models, and the results reveal a
significant improvement in accuracy compared with
those from 24 h-ahead forecasts. The main features and
advantages of the hybrid model are:

(i) it provides us with a general method of combining
available numerical information and human linguistic
information into a common framework;

(ii) it requires much less construction time than a com-
parable neural network;

(iii) significant accuracy in predicting chaotic time-
series models.

7 Conclusions

This paper presents three fuzzy-neural-network (FNN)
models for time-series forecasting of electric load. The
first model, FNN,, uses the fuzzy-membership values of
the past load and weather parameters, and the output of
the FNN, gives the class-membership values of the fore-
cast load. The second and third models, FNN, and
FNNj, introduce the low-level learning power of an arti-
ficial neural network into a fuzzy expert system and
provide high-level human-understandable meaning to the
normal neural network. A hybrid learning scheme con-
sisting of a self-organised-learning phase and a
supervised-learning phase is used for training FNN, and
FNN,. Also the Kalman-filter update equations in the
supervised-learning phase of FNN; give better con-
vergence and accuracy than the gradient-descent back-
propagation algorithm in the supervised-learning phase
of FNN,.
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9 Appendixes

9.1 Appendix 1

This Appendix gives the update equations for FNN,

(shown in Fig. 3) using the backpropagation algorithm
(a) The weight-update equations for layer four is

—0E
WAt = Wt 14
) = Wit + 'I[ 6WU] (14)

The error function E is given by

E = 3{edt) — é.clr)}? (15)
Since

5 2 (aybu?

by = S (16)

te Z b; .“i5

and using centroid-defuzzification method [15] we obtain

14
wo=pt= 3wy (17)
i=1
where
W;=1 fort=1
Therefore

OE _ OF déc o )
aW}j B 0é,c Op} oW,

i
From eqn. 18, we obtain

JE
6_W}j = {epc(t) — &.(0)}

sy _ 5
% {aij b.-,(): bij(.‘:v‘\:‘)b”li.sz)zaijbij“i )by}#? (19)

(b) Training the output membership functions at layer

—~0E
ait+ 1) = aij(t) + '71[ 6(1,7 ] (20)
where n is the learning rate. Now
0E  OE 0é,c

0oy 0éc Oay

21
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Therefore, using eqns. 15 and 16 we obtain

b..u’d
a;{t + 1) = a;{t) + mie,dt) — éLc(l)}{iﬁs_} (22

Similarly,

—0E
br+1)=b{) + '12[ b, ] (23)

where 7, is the learning rate. Now

OE _ OE déc
db;  0é,c ob,

(24)

Therefore, using egns. 15 and 16 we obtain
bift + )= b.(t) + m{e dt) — érct)}
% {aijﬂis(z bijﬂis) - (Z di; bijuij);uis} (25)
(Z bij #?)2

(c) Training the input membership functions at layer 2:
The error signal 5¢ at layer four is given by

6? = {eLc(t) - éLC(t)}
< {aij b.-,-(z bijuis - (Z aijbij l‘is)bij}
(Z bij H?)Z
where (a;;, b;;) correspond to the output-term set.
The error signal at layer three is found by performing

the summation over the consequences of a rule node (ie.
layer four). Therefore

5= 5 a7)

(26)

The adaptive rule for g;; (layer 2) is derived as

aft + )= a0 + n;["—ﬂ (28)

da;;

where n; is the learning rate. Now

9k _ 5 —0xi — aij)z {2(Xf — aij)}
oa, = 07 [cxp { b, H b, 29)

Also
6f =34} (30)

in similar way as for eqn. 27. Therefore
p— . — . 2
aft + 1) = at) — ms 6?[exp {_gb_a)ﬂ
ij
AUx: — @
e o

ij
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Similarly, the adaptive rule for b;; (layer 2) ts derived as

bt + D=Db{t) —n4 5?[“1’

X; — i)

« {‘——ﬁ} (2

92 Appendix 2
This Appendix gives the update cquations for FNNj
using the linear Kalman-filter equations.

{a) The weight-update equation for layer four is

—3E
W (1) = W M1) + nK [ -M] 33)

where {Ef3W;) 1s given by eqn. 19 and K1) i the
Kalman gain and is given by

\ R} (0)x0)
_ i
Ko = {f + x[(OR; 1(t>xxz)} 4

where x{t) corresponds to the previous layer.
The forgetting factor f; and the inverse tonvariance
matrix R; z) are updated using

ft+ D =fo A0+ ~fo) 35
R7( + )~ {R;'(0 — KinxTOR; "W}, 36)

(b) The update equations for a;; and b;; af layer five are
| —9E )
aft + Y =af+mK Aﬁ(t)[ﬁ—] 37
where (BE/da) 1s given by eqn. 21
—8E
bt + D=5ty +n, K Ml}éb-] 3%)
i

where (2E/db,)) is given by eqn. 24.
(c) The update equations for g;; and &;; at layer two
are

a{t + 1) =a;ft) + ns K]f(t)i[ aaw] 39
where (6E/éa;;) is given by eqn. 29. Similarly,
y —{x; — a4 3
bift + 1) = b{t) = 14 Kj{t')fsf’[cxp { ( . &; }:]
| i

»
x {&x——"_ﬁ 7 } 140)

where 82 is given by eqn. 30.
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