
Anticipatory fuzzy control of power systems 

P.K. Dash 
A.C. Liew 

Indexing terms: Fuzzy logic, Kalmanfilters, Neural networks, Power systems, Stability, Transient disturbances 

Abstract: The paper presents an anticipatory 
fuzzy control to improve the stability of electric 
power systems. This differs from the traditional 
fuzzy control in that, once the fuzzy-control rules 
have been used to generate a control value, a pre- 
dictive routine built into the controller is called 
for anticipating its effect on the system output and 
hence updating the rule base or input-output 
membership functions in the event of unsatis- 
factory performance. The effectiveness of the 
anticipatory and traditional PI fuzzy controllers is 
demonstrated by simulation studies on a single- 
machine infinite-bus and multimachine power 
system subjected to a variety of transient dis- 
turbances for different operating conditions. The 
anticipatory fuzzy control, however, requires a 
neural-network prediction routine using modified- 
Kalman-filter-based fast-learning algorithm. 

1 Introduction 

Many modern power systems have long transmission dis- 
tances and remote sources of generation. Such systems 
have high series impedance which reduces system stabil- 
ity. Conventional stabilisers of fixed structure and con- 
stant parameters are tuned for one operating point and 
can give optimal performance for that condition. As the 
characteristics of power system elements are nonlinear, 
conventional stabilisers are not capable of providing 
optimal performance for all operating conditions. 

With the widespread use of static excitation systems, 
the transient-stability limit of a synchronous machine has 
been significantly improved by the features of fast 
response and high ceiling voltage inherent in a static- 
excitation system. However, during small disturbances, 
the damping of synchronous-generator oscillations 
deteriorates and this necessitates the use of an auxiliary 
controller. Amongst the various control schemes pro- 
posed earlier, a supplementary excitation controller 
which can generate a damping signal in the excitation 
system has attracted widespread interest. In the past 
decade, a considerable amount of research has been 
undertaken to develop a self-tuning power-system stabili- 
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ser [l, 23 for generating the desired supplementary stabil- 
ising signal. 

Recently, alternative control schemes based on rule- 
based stabiliser and fuzzy logic decision system have been 
proposed. Of these schemes, fuzzy control appears to be 
the most suitable owing to its low computational burden 
and ease of implementation using a microcomputer 
C3-51. The fuzzy-logic-based controller overcomes system 
ambiguities and parameter variations by modelling the 
control objective in terms of a human operator’s response 
to various system scenarios, thereby eliminating the need 
for an explicit mathematical model of the system 
dynamics. The fuzzy controller for synchronous- 
generator stabilisation relates significant and observable 
variables such as generator speed and its rate to an aux- 
iliary control signal for the power-system stabiliser using 
fuzzy-membership functions. These variables evaluate 
control rules using the compositional rule of inference. 

In this paper, a new control strategy, called antici- 
patory fuzzy control, is proposed for supplementary sta- 
bilisation of synchronous machines in a power system. 
This control differs from the traditional fuzzy control in 
that, once fuzzy-control rules have been used to generate 
a control value, a predictive routine built into the con- 
troller is called to anticipate the effect of the proposed 
control on the system output. If using the current control 
value will result in system behaviour which is in some 
way unacceptable, additional rules are called. This 
method may be used to nest as many sets of rules as the 
designer desires. The predictive routine uses a neural 
network based on a modified backpropagation learning 
technique [7]. The anticipating fuzzy controller based on 
a neural-network system-identification routine [8,9] pro- 
duces significant damping of the electromechanical oscil- 
lations of a single-machine infinite-bus and multimachine 
power system for a variety of transient conditions. 
However, the implementation of this type of controller 
requires one-step-ahead prediction of machine speed 
resulting in increased computational overhead compari- 
son with a conventional fuzzy controller. 

2 Fuzzy control of synchronous-generator 

This Section details the design of the rule-based fuzzy- 
logic controller used to achieve the desired transient per- 
formance of a synchronous generator connected to a 
large power system (Fig. la). The idea of a fuzzy set intro- 
duced by Zadeh [6]  allows imprecise and quantitative 
information to be expressed in an exact way and, as the 
name implies, is the generalisation of the characteristic 
function which can take values between 0 and 1. In the 
fuzzy-control algorithm, the state variables are the fuzzy 
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sets associated with Aw and Ah, where Aw is the 
generator-speed-deviation signal used as a supplementary 
stabilising signal for the PSS (shown in Fig. 2) and AW is 
the acceleration (derivative of Am) signal. 
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bus2 bus3 

generator 3 

generator 2 

Fig. 1 
a Single-machine-infinity-bus power system 
b Multimachine-power-system configuration 

Single- and multi-machine configurations 
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Fig. 2 Supplementary fuzzy controller for PSS 

The inputs to the fuzzy controller are 

Aw(nT) = w(nT) - wo 
AW(nT) = {Aw(nT) - Aw(nT - T)} /T  (1) 

where T is the sampling period and n is a positive 
integer. 

The fuzzified input and output from the fuzzy control- 
ler are 

4nT) = FCg, Aw(n7-11 
ce(nT) = F[g, Aw(nT)] 

du(nT) = DF[dU(nT)] 

u(nT) = u(nT - T )  + gu Au(nT) (2) 
where F [  1, and DF[ ] stand for fuzzification and defuz- 
zification, respectively, and Au(nT) denotes the incremen- 
tal output after defuzzification at sampling time nT, and 
ge, g, and g. are gains for error (e), its rate (ce) and the 
control output @U), respectively. 

2.1 Fuzzification algorithm and fuzzy-control rules 
A simple fuzzification algorithm for scaled errors and 
rate is shown in Fig. 3, where L denotes either the 
maximum error Am or maximum rate A h  multiplied by 
the gains ge and gr , respectively. The fuzzy-set error e has 
two members, i.e. error positive ep  and error negative e,, 
and fuzzy-set rate ce has two members, i.e. rate positive rp  
and rate negative r n .  The output fuzzy-set control dU has 
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three members, i.e. output positive o p ,  output negative 
on,  and zero output 0,. 

The following fuzzy-control rules are used in this 
program 

Rule 1 : IF e is ep AND ce is rn THEN dU is 0, 

Rule 2: IF e is ep AND ce is rp  THEN dU is op 

Rule 3: IF  e is e, AND ce is r ,  THEN dU is 0, 

Rule 4: IF e is e, AND ce is r p  THEN dU is 0, 

\ P  1 / 

b 
Fig. 3 Furzijcation 
(I Fuzzitication of error and rate 
b Fuzntication of control output dU 

Thus the rule based considered above belongs to the sim- 
plest fuzzy controller. Extra rules can be added by includ- 
ing more fuzzy classifiers such as erp (error small positive), 
esn (error small negative), elp (error large positive) and e,, 
(error large negative). Similar classifiers for rate and 
control output are used. The total number of rules in the 
rule base will thus be 16. 

The membership functions for the error e and its rate 
ce are obtained from Fig. 3 as 

(3) 1 Pep@) = { L  + see1/2L 
P A 4  = { L  - %.elm 
P&) = { L  + grce)/2L 
P,&) = { L  - 9, ceJ/2L 

The membership functions for the control output are 
given by 

(4) i P & W  = dU/Ll 
P 0 " W )  = - d U / L ,  
&#U) = 0 

To enable the fuzzy controller to operate for any given 
input, use is made of the compositional rule of inter- 
ference as dU = (e x ce) . R. 

Normally . denotes the max-min product. In our case, 
Zadeh AND and OR rules are used for evaluating the 
control. Zadeh AND or OR rules are given by 

A N D  rule: 

P a  n Ax) = min { P A X ) ,  PB(X)J ( 5 )  
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OR rule: 

P A  B(x) = max {PAX), P&)} (6) 
A and B are the linguistic sets for error Am and the rate 
A h ,  respectively. The inference engine of the fuzzy-logic- 
based controller matches the preconditions of rules in the 
fuzzy-rule base with input-state linguistic terms and per- 
formance implications. For example, for a given error 
and its rate, the firing strengths a,, a2 ,  a3 and a4 of rules 
1-4, are obtained as 

a, = P&) A Pc, . (C4 

a2 = P&) A P r p ( C 4  

a3 = P&) A p,.W 

a4 = pe&) A P , ~ ( C ~ )  

(7) 

where A stands for fuzzy AND operation. 
Taking the min operator 

al = { L - g, ce}/ZL 
a2 = { L + g, ce}/2L 
a3 = { L + g. e}/2L 
ct4 = { L  - g,e} /ZL 

(8) 1 
the control output of any rule is calculated by matching 
strength of its precondition on its conclusion. Since rule 1 
and rule 4 have the same output set, the Zadeh OR rule 
is used to evaluate the output decision a, as 

a,, = a, V a ,  (9) 

a,, = { L - g, ce}/ZL (10) 
Using a nonlinear defuzzification, the control output dU 
is given by 

(1 1) 
where d U 2  and d U ,  are the values of the control output 
for which membership values of pop(dU) and p,,(dU) are 
each equal to 1. The nonlinear defuzzification algorithm, 
after some simplification, yields the control Au as 

whose V stands for the max operation and a, is 

dU = (a2 dU2 + a3 dU3)/(az  + a3 + a,) 

Au = Lls,Cg, e + 9, c e l / W  - ge I e I ) (12) 
forg,Icel<g,IeI < L  
and 

Au = L,guCg,e + grcel/(3L - 9.lcel) (13) 
The scaling factor gu is chosen as - 1 and the values of ge 
and g, are obtained by minimising a performance index 
of the form 

J = ( t  Am)’ dt  (14) sb 
If, on the other hand, the weighted-average method is 
used for defuzzification, the controller output will be 
given by 

(15) Au = 2L,{(L + g,ce)2 - ( L  - ~ .e )~} / (2L  - 9.1 e l  ) 
for g,lcel < g,lcel < Land 

Au = 2 L , { ( L + g , c e ) 2 - ( L - g , e ) 2 } / ( 2 L - g , I e I )  (16) 

forgelel < 9,lceI < L 
A new control strategy, called anticipatory fuzzy 

control, differs from traditional fuzzy control in that, 
once fuzzy rules have been used to generate a control 
value, a predictive routine built into the controller is 
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called to anticipate the effect of the proposed control on 
the system output. If using the current control value will 
result in system behaviour which is some way unaccept- 
able, additional rules are called. This method may be 
used to nest as many sets of rules as the desigure desires. 

The advantages compared with standard fuzzy con- 
trollers are 

(i) nesting rules allow the use of only as many rules as 
are necessary to achieve the desired system performance, 
saving computer time; and 

(ii) by predicting system performance, controls which 
would result in unstable or unacceptable system per- 
formance can be discarded. 

The simplest type of anticipatory control has a single 
additional rule of the form: ‘If the current control U, will 
cause the difference between the current and anticipated 
values of rate of change of speed deviation Am to be 
large, then the new control U is 

(17) U = UJ1 - Bp{Ah(t + T )  - Ab@)}] 

A b  = { A d t  + 1) - Ao(t)}/T 

and 

where p(8h) is the membership function of the predicted 
acceleration and the value of B varies between 0 and 1 
and can be determined heuristically’. 

In this paper an optimum value of B is found by mini- 
mising quadratic-performance index of the form 

J = ( t  Am)2 dt (18) l 
However, a fuzzy supervisor can be used to determine the 
value of by computing a pseudodamping rate 

d, = r(t + T)/r(t)  

where 

r(t) = A q t ) ’  + Bl(Ab(t)’ B1 > 0 (19) 
The value of d, will determine the value of B using the 
logic of approximate reasoning. If d, is small, the system 
state will move towards the desired state. 

3 Neural network for prediction 

The implementation of an anticipatory fuzzy controller 
necessitates the prediction of the Aw(nT + T )  one step 
ahead of the input signal and thus a neural network [SI 
can be used for system identification and one-step-ahead 
prediction. For a power system, the input-output 
relationship can be written in the form 

Y O  + T )  = f { y ( t ) ,  At - T), . . . , - nT), 
u(t), . . . , u(t - nT)} (20) 

where the function f represents a memoryless nonlinear 
function. As shown in Fig. 4a, the neural net can be sub- 
stituted for the memoryless nonlinear function f to con- 
struct the neural-net model for the plant. As shown in the 
Figure the neural net monitors the current and past plant 
inputs and outputs and is adjusted, or trained, so that it 
can predict the next output of the plant. The block 
diagram for the anticipatory fuzzy control using a neural 
net for one-step-ahead prediction is shown in Fig. 4b. 

From the Figure, it is seen that the output from the 
fuzzy controller u(t) goes to the neural net along with 
past inputs and outputs to predict the one-step-ahead 
output. However, if the neural net-predicted one-step- 
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ahead output deviates significantly from the actual 
system output, the weight adjustment of the previously 
learned neural-net model is carried out. 

u (t -n) 

neural-net model 

Y d  l 

u(t-1) 

u(t -2) 4 fuzzy controller 

"it-1) h 
power system 

error 
u(t-1) 
u(t-2) 2=;.'- 
y(t-2) 
y(t-1) 

b 
Fig. 4 Neural-network models 

r? Neural-network model of the power system 
Input Lo net: measurements U@), 
A t +  1) 
b Neural-network prediction and fuzzy-control model of the power system 

, u(t - n). HI), .. , Y(t - n). output prediction 

In this paper a modified backpropagation neural 
network with a fast learning algorithm [9] is used to 
predict the output one step ahead. The algorithm mini- 
mises the mean-squared error between the desired output 
and the actual output with respect to summation output 
(inputs to nonlinearities). This is in contrast to the stand- 
ard backpropagation algorithm which minimises the 
mean-squared error with respect to weights. Error 
signals, generated by the backpropagation algorithm, are 
used to estimate values at summation outputs which will 
improve the total network error. These estimates, along 
with the input vectors to the respective nodes, are used to 
produce an updated set of weights through a system of 
linear equations at each node. These linear equations are 
solved using a Kalman filter at each layer (Figs. 5A-C) 
and training patterns are run through each layer until the 
convergence is reached. An autotuning procedure and 
Kalman-gain variation as a function of the output error 
E are used to achieve very fast convergence to the earlier 
algorithm. The details are given in Appendix 8.1. 

The neural network used for the training comprises six 
input neurons, one hidden layer with 15 neurons and 
one output neuron. The inputs to the net are 
Aw(t), Aw(r - T), A o ( t  - 2T), and AEfAt) ,  AE,,(t - T) ,  
AEJ,(t - 2T) and AEfd is the excitation voltage change 
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to be applied to the generator. The training patterns 
consist of the data samples generated under normal and 
a variety of abnormal conditions to predict the one-step- 

output 

w u  
Fig. 5A Feedforward neural network usedfor prediction 

lerror 

Linear portion 

Fig. 56 Linear and error portion ofthe hidden layer 

f - k )  

X" 

x2* = + f (  ) output 

I error 

linear portion 
Fig. 5C Linear and output portion of the output layer 

ahead output, i.e. Ao(t  + T). The parameters for the 
training algorithm are 

Initial weights: -0.8 to 0.8 
Number of iterations: 80 
ji = step size = 40 
a = sigmoid slope = 0.28 
c = Kalman initialisation constant = 1.0 
bo = forgetting factor (starting value) = 1.0 
b = forgetting factor = 0.98 

As seen from the above parameters, the number of iter- 
ations required to achieve convergence is very small com- 
pared with the normal backpropagation (which takes 
nearly IOOOO iterations) and compared with the modified 
backpropagation proposed earlier and without autotun- 
ing features. 

4 Power system studied 

Case 1 : Single-machine infinite-but system 
The power system shown in Fig. l a  consists of a 
synchronous generator connected via high-voltage 
double-circuit transmission lines, represented by a 
lumped reactance, to a large power system, represented 
by an infinite bus. 

The generator is equipped with a governor and a fast 
static-excitation system and the excitation control loop 
includes a conventional AVR and, in addition, an aux- 
iliary fuzzy controller. The fuzzy controller is activated 
from the generator speed and acceleration signals. The 
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synchronous generator is represented by a third-order 
model and its equations and parameters are given in 
Appendix 8.2. The following fuzzy-controller parameters 
are used for optimum results: g. = 2.0, gr = 0.4 and 
AQmax) = 5 rad/s, Aw(max) = 25 rad/s. The tuning 
parameter for the anticipatory fuzzy control is initially 
fixed at 0.4. Its variation greatly affects the transient per- 
formance of the studied system. The following dis- 
turbances are considered in these simulation studies. 

4.1 Step change in input power 
The performance of the anticipatory fuzzy controller for 
a step change in input power ( P  = 0.8, Q = 0.2) is shown 
in Fig. 6. The input power is changed by 20% and kept at 
that value for a duration of 0.5 s. The anticipatory fuzzy 
controller fi is fixed at 0.8. The choice of this parameter is 
very critical in providing optimal transient performance. 

From Fig. 6 it is seen that the first swings of the rotor- 
angle displacement 6 are considerably reduced compared 
with those of the conventional controller. Further, the 
damping provided by the anticipatory fuzzy controller 
for both speed and rotor-angle oscillations is found to be 
superior to that provided by the traditional fuzzy con- 
troller. 

4.2 Small changes in the infinite-bus voltage 
Performance results for a small change (2%) in the refer- 
ence terminal-voltage magnitude are shown in Fig. 7 for 
both types of fuzzy controller. The small-oscillation per- 
formance of the anticipatory fuzzy controller is found to 
be better than that of the fuzzy PI controler. The initial P 
and Q loadings are fixed at P = 0.8, Q = 0.2. The first 
swings in both rotor angle and speed oscillations are sig- 
nificantly reduced. 

4.3 Three-phase fault at generator bus 
The performance of the anticipatory fuzzy controller for 
a 3-phase short circuit on the generator bus and cleared 
in 0.1 s is shown in Fig. 8. The Figure also presents the 
results for the fuzzy PI controller for comparison. The 
first swings of the rotor angle are considerably reduced 
using the new approach. 

1.2 r r .  

The generation speed deviation and controller outputs 
show a similar trend, indicating the superiority of the 
new controller over the traditional fuzzy controller. 

1.21 

09- 098- 

r 

0 2 4 6  
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4.4 Effect of variation of /3 
The effect of variation of p on the transient performance 
of the generator connected to an infinite bus is shown in 
Fig. 9. The operating point of the generator is fixed at 
P = 1.2, Q = 0.4. A three-phase short circuit is created on 
the infinite bus and is cleared 0.1 s after its initiation. In 
addition, one of the transmission lines is removed imme- 
diately after the fault. From the transient-response curves 
it is seen that, for low or high values of p, the overshoot 
and settling time are both higher (Fig. 9a). An optimum 
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value of j3 is found to be 0.8 for the case considered in 
this paper. The speed deviation and auxiliary-controller 
output for this fault are shown in Fig. 9b using conven- 
tional, fuzzy and anticipatory fuzzy (j3 = 0.8) control. 

r 
1.8 - 

U 1 . 6 ~  
0 

1 .o 
2 
+ 

1.4- 2 0  

g -1.0 

," - i  
i 1.2.-' x 
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0 1  

+ .  

0 

c 
0 1.04 

U L 1.00~ 

+ 

U 

U 

a 
P-0.1 0.96 

5 I -  I 

time, s time, s 
C d 

Fig. 9 
(I Effect 01 variation 01 fl  on the dynamic performance 

Efect  ofthree-phase fault at infinite bus and removal ofone line 

~ f l  = 0.4 -*- f l  = 0.8 
-A- f l  = 1.0 

-H- conventional 
-A- anticipatory 

c Effect on auxiliary input 
-H- conventional 
-A- antinpatory 

b Effect on speed 

~ fuuyPI 

~ 1WzyPI 
d Effect on V, 

-H- conventional 
-A- anticipatory 
~ fuzzy PI 

Case 2:  Multimachine power system 
The multimachine system used in the studies is shown in 
Fig. lb.  This system consists of three generators with 
transmission lines and associated loads. Each system is 
equipped with a simple governor, an AVR and thyristor 
exciter for fast response. In addition, generators 1 and 2 
are provided with auxiliary fuzzy controllers for the PSS 
loop, and these are activated by speed and acceleration 
error signals. Generator 3 is provided with conventional 
PSS. 

The parameters of the generator governors and trans- 
mission lines are given in Appendix 8.3. The conventional 
stabiliser uses the same parameters as in the single- 
machine infinite-bus case. 

4.5 Three-phase fault at busbar 1 
Fig. 10 shows the system response to a three-phase short 
circuit to earth at busbar 2 which is cleared after 100 ms, 
and illustrates the response for fuzzy and neurofuzzy 
(anticipatory fuzzy) controllers. The swings of the rotor- 
angle displacement a,, and a,, are considerably reduced 
with the anticipatory fuzzy controller in comparison with 
the traditional fuzzy controller. The oscillations settle out 
in about 2 s. The oscillations in the rotor speeds Bo, and 
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Am, of generators 2 and 3, respectively, also show a 
similar trend and the damping is found to be significantly 
improved using the combined fuzzy and neural-network 
control. 

I ,  3 ~ I ,  % 

' 0 2 4 6  

Fig. 10 Response to a three-phase short circuit at bus 2, multi- 
machine power system 
~ fuuy 
-e- neuro-fuzzy anticipatory 

time, s 

5 Discussion 

From the results presented in Figs. 6-10, it can be seen 
that the anticipatory fuzzy controller produces excellent 
damping for a variety of transient distrubances in single- 
and multimachine power systems and the constant j3 is 
an important parameter for optimising the transient per- 
formance of this controller. A performance index can be 
used to choose the optimum value of j3 for the best 
damping. The fuzzy PI controller also produces excellent 
damping but has slightly more initial overshoot and a 
greater settling time than the proposed fuzzy control. 
Further, the value of can be chosen using a fuzzy super- 
visor. 

6 Conclusions 

The paper presents the design of an anticipatory fuzzy 
controller for the auxiliary control loop of the PSS of a 
single-machine infinite-bus and mulimachine power 
system. Both the fuzzy and anticipatory fuzzy controller 
produce excellent damping compared with the conven- 
tional controller for a variety of transient disturbances on 
the power system. The anticipatory fuzzy controller, 
however, requires a neural-network prediction routine for 
an accurate one-step-ahead prediction of the generator 
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acceleration. The proposed anticipatory fuzzy stabiliser is 
very simple for practical implementation since the decen- 
tralised output-feedback control law developed in this 
paper requires only local measurement at each generating 
unit. 
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8 Appendixes 

8.1 Kalman - filter-based learning algorithm 
Referring to Fig. 5, the nonlinear problem of system iden- 
tification is reduced to a linear one with known y;  and x; 
(outputs and inputs). Here, the output and inputs to the 
network are known during training and so the desired 
output [d ,  =f-’(o,)] is known but all other inputs are 
unknown and need to be estimated. I f  the estimates are 
designated by the usual known symbols with a prime, so 
that the estimate of  x, is xb =f(d,), then d ,  can be calcu- 
lated by using 

(21) 
where p, is the learning rate and e,  is the error calculated 
in the conventional backpropagation algorithm. 

The total mean-squared error E is given by 

d6 = y ,  + u,e, 

where M is the number of training patterns, and y ,  and 
d,  are the actual and desired summation outputs for the 
pth training pattern. The weight vector W [ 9 ]  can be cal- 
culated by solving the equation 

W = R - ’ C  (23)  
where R is the autocorrelation matrix 

M 
= c x,x; 

p = 1  

Cis the crosscorrelation matrix 
M 

= C d , x ,  
p =  I 

where M is the number of  patterns. 
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The weights are updated by solving these sets of linear 
equations at each node. This can be achieved by each 
layer with a variable forgetting factor. 

Further, to increase the rate of  convergence and 
reduce the number of iterations, the slope a of  the 
sigmoidal nonlinearity, the learning rate ji and the 
Kalman gain are updated at each iteration. This reduces 
the number of iterations drastically from 300 or so 
(proposed in the earlier algorithm) to 100 to achieve con- 
vergence. 

The modified algorithm (compared with that presented 
in Reference 9 )  is implemented in the following steps: 

Step 1 : Randomly select training pattern. 
Step 2: For each layer j, j = 1, ..., L, calculate, f o r  

every node k,  the summation output 
N 

yjk = ( x j -  1. I wjXi) (26) 

x j k  = f ( ~ j J  = [{I  - exp ( - Q Y ~ J } / { ~  + exp ( - a ~ j J l I  

L=O 

and function output 

(27) 
where N is the number of inputs (including the offset) to 
a node, and a is the sigmoid slope. 

Step3: For each layer j from 1 to L, calculate the 
Kalman gain 

kj  = ~ ~ : ~ x ~ - ~ / ( b ~  + x;-I~J:lxj-l) + y j  aEj/akj (28) 
The gradient dEj/dkj is calculated as 

_ -  a @  - {E’@) - EJ(t  - 2)} / {kAt  - 1) - k i t  - 2)}  (29) akj 

The forgetting factor is updated as 

bj = bo bj + (1 - bo) (30) 
and, R / ’  = (R,:’ - k , ~ f - , R ~ : ~ ) b / ~  where RI:’ is the 
inverse autocorrelation matrix. 

Step 4 :  The derivatives o f f ( y j k )  are calculated as 

f ’ ( ~ j J  = W ~ X P  ( - w j k ) 1 / { 1  + ~ X P  ( - a y j ) j Z  (31) 
where the prime denotes the derivative. 

ation as 
Further, the sigmoidal slope is changed at every iter- 

aE 
a(t) = a(t - 1) - ya - = a(t - 1) 

aa 

+ y,{E(t - 1 )  - E(t  - 2 ) } / { a ( t  - 1) - a(t - 2 ) )  

(32) 
and yo is chosen to be positive for  the choice of the 
sigmoidal parameter in the proper direction of con- 
vergence. 

The output error signal at j = 1 is 

ELK = f ‘ ( ~ u d O K  - x L K )  (33)  

ejk = f ’ ( y j k )  C (ej+ I I wj+ l ,  i. (34) 

and the hidden-layer error signal is ( j  = 1 - 1, . . . , 1) 

Step 5: The desired summation output at the output 
layer is obtained as 

= (I/a) In ((1 + O k ) / ( 1  - ok)} (35) 
for every kth node at the output layer. 

Step 6: The output-layer weight j = 1 is updated as 

WLK = w L K  f kL(dk - YLk) (36) 
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and the hidden-layer weights are updated as 

wjk = w,k + kjejkpj (37) 
f o r j =  1, . . . ,  1. 

Initialisation: Node offsets are fixed at + l .  Network 
weights are initialised to random values and initialise the 
R-' matrix. In the above algorithm, j stands for layer, k 
for neuron and i for inputs to the kth neuron. 

8.2 Synchronous-machine equations 

d = Am 

A b  = (T, - E, i ,  - D Am)/M 

p, = (Ejd - ( X d  - X &  - E;)/& 

E, = E: + ( x ,  - x&)id 

U d  = x,  I ,  

U ,  = E; - x&id 

= + A E J d  

U ,  = J(v: + v i ,  
i d ,  i, = d-axis and q-axis currents 

vd , U ,  = d-axis and q-axis voltages 

A V R  and exciter: 

AEjd = {k,(v,,f - Ut) - AEfd}/Te + k,U/T, 

Governor: 

U, = {k, Am - U,}/< 

and 

T, = (F,,u, - T,)/Z, 
The conventional stabiliser used in this simulation is of 
the form 

8.3 System parameters 

8.3.1 Single-machine infinite-bus system 

xd = 2.0 X ,  = 2.0 M = 0.032 X &  = 0.271 

X ,  = 0.2 T i o  = 4.955 C, = 1.0 

AVR, PSS and governor parameters: 

T,  = 0.1 s k, = 50.0 k ,  = 2.5 < = 0.1 s 
F,,  = 1.0 T, = 0.1 s k ,  = 0.1 T1 = 0.3 s 

T2 = 0.04 s = 2.5 s 
Limitation on control signals: 

Ejd E [ - 6.0, 6.01 

U, E [0, 1.151 

U E [-O.l,O.l] 

8.3.2 Data for three-machine power system 
Generators 1 and 2: 

xd = 2.0 X, = 2.0 M = 0.032 x& = 0.271 

51, = 4.955 S 

Generator 3: 

xd  = 1.537 X, = 1.476 M = 0.0276 X &  = 0.249 

T&, = 4.629 s 

Line parameters: 

r l ,  = 0.2 x 1 2  = 0.2 r 1 3  = 0.015 x 1 3  = 0.15 

rZ4 = 0.02 xZ4 = 0.2 r j 4  = 0.02 x34  = 0.2 

AVR and governor parameters and limitation on control 
signals are chosen to be same as for the single-machine 
infinite-bus power system: 

Loads P Q 
bus 2 1.2 0.2 
bus 3 1.2 0.5 

218 I E E  Proc.-Gener. Transm. Distrib., Vol. 142, No .  2, March 1995 


