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Abstract-Laminar mixed convection boundary layer flow of a micropolar fluid from an isothermal 
vertical flat plate has been considered. This problem does not admit similarity solutions and has 
been solved numerically by using a finite-difference technique in a finite domain. Velocity, 
microrotation and temperature fields have been computed and shown graphically from pure forced 
convection to moderately large free convection flows. The skin-friction and the rate of heat transfer 
parameters on the plate have been tabulated. It is found that velocity increases and temperature 
decreases with the heating of the fluid while these results reverse for the cooling of the fluid. It 
is observed that the microrotation is very sensitive to the changes in the values of Grashof number 
when fluid is being heated by the free convection current while it is rather insensitive when fluid 
is being cooled by the free convection current. Furthermore, the results have been compared with 
the results of the corresponding flow of a Newtonian fluid. 

1. INTRODUCTION 

Thermal buoyancy effects on forced convective heat transfer over a surface may become 
important when the flow velocity is relatively small and the temperature difference between 
the surface and the ambient fluid is large. The thermal buoyancy force effects on heat 
transfer characteristics of forced convection have been studied fairly extensively for various 
flow configurations, particularly the forced flow along a vertical surface. Several 
investigators[l+ have reported on the theoretical work in the field of heat transfer from 
a heated vertical plate with combination of free- and forced-convection flow for a 
Newtonian fluid. However, there is no such work available in the literature for fluids which 
are a mixture of heterogeneous means such as liquid crystals, polymers, polycrystalline 
aggregate, granular media, ferro-liquid etc., which is more realistic and important from 
the technological point of view. The occurrence of bar like elements or polymeric additives 
rotating in fluids has been found to affect the heat exchange processes significantly[S]. For 
the realistic description of the flow of fluids such as fluids with polymeric additives etc., 
the classical continuum mechanics cannot be used because it regards them as single 
continuum. In order to describe adequately the nature of such substances, it seems to be 
necessary to assume that the material consists of more than one constituent. The 
theoretical study of this system of fluids has been very useful in understanding such 
phenomena as sedimentation, fluidization, combustion, environmental pollution and so 
on. It is interesting to note that several theories, e.g. polar fluids, dipolar fluids, couple 
stress fluids, anisotropic fluids, asymmetric hydromechanics etc., exist to describe the flow 
behaviour of such rheologically complex fluids. However, it has been demonstrated by 
Ariman et al.[6] that for linear viscous and isotropic fluids all these theories can be 
considered as equivalent to micropolar fluid theory[7] proposed by Eringen. Moreover, the 
micropolar fluid model is more suitable because the microcontinuum approach describes 
the microscopic events, microrotation and shape and size of the suspended particles. A 
detailed and rigorous theoretical approach of modem phase of the continuum theory of 
mixture can be found in the papers by Eringen[7-91. 

The literature on free convection flow of micropolar fluids is small but growing. The 
problems of convective heat transfer of micropolar fluids in a vertical channel and in a 
horizontal parallel plate channel have been considered by Balaram and Sastry[lO] and 
Maiti [l l] respectively. Sastry and Maiti[l2] have studied the problem of free and forced 
convective heat transfer in a micropolar fluid in an annulus of two vertical pipes. In all 
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these studies[l&l2] boundary layer concepts in convective flow have not been taken into 
account. Very recently, Jena and Mathur[l3] have studied the free convection in the 
boundary layer flow of a micropolar fluid past a non-isothermal vertical flat plate. 

The boundary layer equations for the combined free- and forced-convection flow of 
a micropolar fluid over a vertical flat plate do not admit similarity solutions, as it was in 
the case of only free convection[l3]. The solutions to these boundary layer equations may 
be obtained through the application of the finite-difference technique. Using this pro- 
cedure, it is possible to determine the velocity and temperature fields in the boundary layer 
for a wide class of problems as a function of the plate temperature as well as thermal 
properties of the plate and fluid. But, when finite-difference methods are employed for the 
numerical solution of the problems concerned with regions of infinite extent in one or more 
directions, there are two main difficulties to be faced, viz., the satisfaction of boundary 
conditions at infinity and the representation of an infinite interval with a finite number of 
grid points. To overcome these difficulties, Sills[l4] has proposed three types of trans- 
formations. The one most suited for the application of finite-difference schemes is to map 
the infinite field into a finite one by introducing a co-ordinate transformation. Sills[l4] has 
presented transformations which map one or both of the intervals (0, co) and (- co, co) 
into finite intervals along with an illustration of their application to flow problems. The 
asymptotic nature of these transformations allows the straightforward application of the 
boundary conditions at infinity and at the same time concentrating the grid points in the 
desired region and eliminating the necessity of searching for the effective boundary layer 
edge through additional iteration. 

In the present paper, we have studied the laminar boundary layer free convection in 
a micropolar fluid from an isothermal vertical flat plate placed in an external uniform flow. 
Such a flow is termed as mixed or combined free- and forced-convection flow. The 
equations governing the flow are transformed into new co-ordinates with a finite domain 
using the transformation given by Sills[l4]. These equations are then decoupled and each 
equation is solved for a single dependent variable using finite-difference technique. The 
results have been obtained from pure forced convection to moderately large free 
convection flow. 

2. FORMULATION OF THE PROBLEM 

We shall assume that the x-axis is placed in the plane of the plate in the direction of 
flow, the y-axis being at right angles to it and to the flow, with the origin at the leading 
edge. The equations governing the steady laminar boundary layer flow of an incom- 
pressible micropolar fluid past a vertical flat plate are 

Continuity 

au+!!=,. 
ax ay 

Momen turn 

p(u~+.~)=(~,iK.)~+K~+~~~~~-T,). 

Moment of momentum 

pj(ug+o$)=yU!$-K($+2v). 

(2.1) 

P-2) 

(2.3) 

Energy 

(2.4) 
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where U, u = components of velocity along and normal to the vertical flat plate; 
v = component of microrotation whose direction of rotation is in the xy-plane; 
p, T = density and temperature of the fluid; p,, KC,, yV = viscosity, vortex viscosity and 
spin-gradient viscosity; j, k, = micro-inertia density and thermal conductivity; 
g, 8, c,. = acceleration due to gravity, coefficient of thermal expansion and specific heat of 
the fluid at constant volume. 

The details of the derivation of the boundary layer equations (2.1~(2.4) are available 
in 115, 161. 

In the present investigation, the effects of viscous dissipation and the micropolar heat 
conduction have been neglected. Similar consideration has been made by several 
investigators[l6-181. This is indeed a permissible simplification in this flow problem since 
the heat transfer due to free convection results in low velocities and is normally associated 
with large temperature differences. It has also been recently shown by Mathur et al. [16] 
that viscous dissipation and the micropolar heat conduction have very little effect on the 
temperature field and the rate of heat transfer for the flow of an incompressible micropolar 
fluid past a circular cylinder placed in such a way that its axis is normal to the oncoming 
free stream. 

The boundary conditions for equations (2.1~(2.4) are 

y = 0: u = 0, v = 0, v = 0, T = T,, 

y-‘co: u-+U,, v+O, T-T,, (2.5) 

where T,,,, U,, T, are respectively the constant temperature of the plate, free stream 
velocity and free stream temperature. 

This is to be noted that the various material parameters occurring in the theory of 
micropolar fluids satisfy a number of inequalities which are necessary and sufficient to 
ensure that the rate of dissipation of energy should be non-negative. These inequalities 
have been discussed in detail by Eringen[7-91. 

We introduce the following dimensionless quantities in equations (2.1~(2.4) and 
boundary conditions (2.5): 

x*= x 
(P”lPW Y* = (r”,;u,)’ u* =$ 

v*=v \)*= 
T- T, 

Urn’ (p&p,)’ ’ = T,. - T, ’ 

N, = 3 N2 = 

P”’ 

pr=EE! 
kc ’ 

Gr = gB Uw - T&L, 
PUm3 ) (2.6) 

where Gr is the Grashof number and Pr is the Prandtl number. The parameters N,, N2 
and N,, respectively, characterise the vortex viscosity, micro-inertia density and spin- 
gradient viscosity. 

The equations (2.1)-(2.4) in non-dimensional form, after dropping the asterisks, 
become 

au au _. 
z+s- 

u~+v~ d”=(I+N,)$+N,$+GrS 

.;:;’ ) +v” 
dY 

(2.7) 

(2.8) 

(2.9) 
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ae ae i a28 
u-&+u&=pray'. 

The corresponding boundary conditions are 

y = 0: u = 0, v = 0, 

N. MATHUR 

v =o, e = 1, 

y-+53: ~4, V+O, e-+0. 

We now introduce the following transformations: 

Further, we write 

where rc/(x,y) is the stream function such that 

arl/ 
u=ay and v=-$. 

Making use of (2.12) and (2.13), and denoting 

u=F=ar w ‘=- 25ar ( > df+f , 

equations (2.7~(2.10) become 

2tFg+V$f-GF =N,q-2NI( 
aq 

ae ae i a28 
W,, + V5;; =Ed?Z. 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The boundary conditions are 

q=O:F=O, V=O,G=O,e=l, 

q+co: F+l, G+O, 8-O. (2.19) 

Transformation to finite domain 
The system of partial differential equations (2.15)-(2.18), which involves two indepen- 

dent variables 5 and q, both varying from 0 to co, is to be solved for V, F, G and tI with 
the use of finite difference formulae. In order to facilitate the application of finite-difference 
schemes, we transform the equations to a new system of coordinates wherein the indefinite 
limit of integration in 9 is replaced by a definite limit. Employing the transformation 
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where a is a constant, satisfying a > 0, that can be used as a scaling factor to provide an 
optimum distribution at nodal points across the boundary layer, we arrive at the following 
set of equations for V, F, G and 0: 

(2.20) 25$+ Y'FY+F=O, 

25Fg+ Y’l’gY=(l +N,) Y”Fy+ Y”$ 
[ 1 +N,Y’Fy+2t Grfl (2.21) 

N,(2tFg+ Y'V&GF)=N,(Y"~+ Y”g)-2N,+‘$+2G)(2.22) 

25F; + Y’vFy =A y’l.;Y + ~‘2% 
> 

. (2.23) 

where a prime denotes differentiation with respect to q. The boundary conditions (2.19) 
now become 

Y = 0: F = 0, V = 0, G = 0, 6’ = 1, 

Y = 1: F= 1, G =0, 0 =O. (2.24) 

To complete the governing equations, initial conditions are obtained at 5 = 0 from 
equations (2.20~(2.23), which become ordinary differential equations at 5 = 0. These 
equations are 

dF 
Y'VdY-(I+N,) 

dF d2F 
Y"dy+Y'2p 1 _N J”dC-0 , dY- 

N, Y'V$y-GF 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

The boundary conditions for equations (2.25)-(2.28) are the same as given in (2.24). 

Skin-friction coeficient 
The skin-friction coefficient C” is defined by 

c = <tyx!,.=o 1 
I pu,z= PUG2 

(-)[b+ &I$ + KY 
1 y=o 

since v = 0 at y = 0. 
In terms of the non-dimensional quantities (2.6) and the variables given in (2.12)-(2.14), 

after dropping the asterisks, we have 

(2.29a) 
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In transformed coordinate (for finite domain), we have 

c _w+w aF 
f- & E Y=O’ ( > (2.29b) 

Heat transfer coeficient 
The non-dimensional heat transfer coefficient called Nusselt number N(x) is defined 

as 

where qy is the heat flux at the wall and defined as 

in view of v = 0 at y = 0. (/I, is the micropolar heat conduction coefficient). 
Making use of the non-dimensional quantities (2.6), the Nusselt number (after 

dropping the asterisks) is given by 

N(x)= $ . 0 Y==O 

In terms of the variables given in (2.12)-(2.14), we have 

In transformed coordinate (for finite domain), we have 

ae -- W+ & ay ( 1 y=o’ 

(2.30a) 

(2.30b) 

3. METHOD OF SOLUTION 

A numerical solution of (2.20)-(2.23) subject to the initial conditions (2.25)-(2.28) and 
the boundary conditions (2.24) may be obtained by converting them into a set of implicit 
finite-difference equations of the Crank-Nicholson type. The mesh-point diagram for the 
Crank-Nicholson scheme is shown in Fig. 1. Suppose that there are N + 1 nodal points 
in the Y direction then we have N(d Y) = 1. 

Y 

(0) 1 I 1 
LAY_T 

i-l i i+l 

k AY- 

(b) 
Y 

A5 

m 

r 5 

k.1 

i-l i i+l 

Fig. I. Mesh-point diagrams for Crank-Nicholson scheme: (a) 5 = 0; (b) 5 # 0. 
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(a) Solution for initial conditions 
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We solve equations (2.25)-(2.28) along with the boundary conditions (2.24) using 
finite-difference technique. We decouple these equations and adopt iterative process to 
solve each equation separately for a single dependent variable. As for example, we first 
solve (2.26) for F assuming linear profiles for V and G to start with across the boundary 
layer. In (2.26), we replace the derivatives in terms of central differences, e.g. 

dF &,,-Fi-, d2F 4+, -24++_, 
-= 
dY 2AY ’ p= (AY)2 ’ 

The difference equation for F is now of the form 

AiFi_l+Bil;l+CiF,+I=Di, i=Z...,N, (3.1) 

where 

ViY[ 
A;= -24y + 

(1 + NJYI’ (1 + N,)Y;’ 

2AY - (AY)2 ’ 

B._W +N,)YI’ 
I- (AY)2 ’ 

c,= V,Y; (1 + N,)YI’ (1 + N,)Y;’ -- 
’ 2AY 2AY - (AY)2 ’ 

D,=N,(Gi+I-Gi-~)YI 
I 2AY ’ 

We solve this linear system of algebraic equations using Thomas algorithm[l9]. 
Similarly, we solve equation (2.27) for G and equation (2.28) for 8. After this, we solve 

equation (2.25) for V by writing in the form 

s Y 
vi= - r;l/ Y; d Y. 

0 
(3.2) 

Using trapezoidal rule we evaluate the integral on the r.h.s. of (3.2). The new values thus 
obtained are used again in (3.1) for next iteration and so on. This cycle of computation 
is repeated till convergence is achieved, i.e. the difference between the two successive 
iterates of each dependent variable is less than preassigned tolerance, say 10b4. 

(b) Solution of equations (2.20)-(2.23) 
We have decoupled equations (2.20~(2.23) and solved each equation separately for a 

single dependent variable at each station. Equation (2.21) is solved for F, (2.22) for G, 
(2.23) for 19 and (2.20) for V in that order. We replace, in each equation, the derivatives 
with respect to Yin terms of central differences, and with respect to 5 in terms of forward 
differences. For example, we have used the following type of finite-difference equations to 
approximate the unknowns and their derivatives in (2.21): 
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Further, we have used the following finite-difference equations for linearization of (2.21): 

g = (Gi+,,k - Gi- ,,dlW Y>, F = Ft./o V = Vi.k, 8 = thk. 

After substituting these expressions, the difference equation for F at (k + 1)th station is 

of the form 

where 
A,,F, - l,k+l + Bi.k&,k+ I + Ci,k&+l,k+ I = Di.k, i = 2, - . . , N, (3.3) 

A, = _ vi,ky: +  (1 + N,)Y: (1 + N,)Y:* 

z,k 4AY 4AY - 2(AY)2 ’ 

B, _ Fi,k(tk + tk+,) + (1 + N,)yi2 
1.k - 

A< (AY)’ ’ 

ci,k 

_ Vi&Y: (1 + Nl) Y:* (1 + N,) Y’: 

4AY 4AY - 2(AY)* ’ 

Di,k = 
F&(ek f <k+ ,) _ Vi,k(F+ I.k - F- ,.k) J’: 

A< 4AY 

+(l +NJ 
(6+ I,k - &-,,k) Y: -+ (Fi+,,k- 2&,k + Fi_,.k) Y:* 

4AY 2(A Y)2 1 
+N,(Gi+,, - Gi-,,dY: 

2AY 
+ Gr(& + tk +  ,)%k. 

The functions V, G and 6 appearing in the coefficients Ai,k, Bi,k, ci,k and Di,k are taken to 
be known from the initial conditions or from the values at previous station as the case 
may be. This amounts to solving the algebraic system of equations (3.3) for F alone. This 
system of equations for F is solved by using Thomas algorithm[ 191. 

Proceeding in a similar manner, as outlined above for the dependent variable F, we 

obtain the solutions of the systems of linear algebraic equations for G and 8 wherein the 
functions appearing in the coefficients of the algebraic equations have been appropriately 
averaged. In order to preserve the brevity of the analysis we are not giving further details. 
These details are available in [20]. 

The functions and derivatives in continuity equation (2.20) are approximated with the 
following finite-difference relations: 

g=(vi+,,k- K,k+ C+,,k+,- vi,k +  , )/(24 Y). 

The resulting relation is 

Vi+I,k+l = 

- 
0 

f (e,k+1;1+,.k+&,k+,+&+,.k+,) 

(3.4) - Vl+,,k +  vi, +  vj,k+ ,, i = 1, . . . , N. 
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The new values thus obtained from (3.4) for V are used in (3.3) for next station and so 
on. 

This cycle of computation for all the dependent variables is repeated till the 
convergence for this computational scheme is achieved. The criterion for whether the 
convergence has been achieved or not is that the difference between the values of each 
dependent variable at two successive stations is less than 10W4. 

Skin -friction and heat transfer 
The velocity gradient and temperature gradient on the surface used in the expressions 

for skin-friction coefficient (2.29) and heat transfer coefficient (2.30), respectively, are 
determined from the following second-order expressions 

_- -- Newtonion fluid 
IN,’ N2z Ny 0) 

Fig. 2(a). Velocity distribution: N, = 0.1; N2 = 0.002; N3 = 0.02, Pr = 9.0. 

I/ III IV V VI VII 

-2.0 -0.5 L-0 LO 10.0 10.0 LO.0 
U.L 

0.06 0.005 0.06 0.005 0.06 

(3.5) 

(3.6) 

Fig. 2(b). Velocity distribution; N, = 0.1; N2 = 0.002; N3 = 0.02; Pr = 9.0 
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4. RESULTS AND DISCUSSION 

It is worth mentioning that the problem under consideration is having a free stream 
temperature T, and the body temperature is T,. Hence, it is pertinent to enquire the effect 
of these temperatures on the flow field. For if T, > T,, the free convection currents will 
flow from the plate to the free stream and hence the plate loses heat, as a result of this 
the fluid is being heated. In otherwords, it is termed as cooling of the plate when 
T,- T, > 0, i.e. Gr > 0. Conversely, if T, - T, < 0, i.e. Gr < 0, the free convection 
currents travel from the free stream to the plate and this case corresponds to heating of 
the plate (cooling of the fluid) by free convection currents. When T, = T,, i.e. Gr = 0, the 
plate temperature equals the free stream temperature and the flow is solely due to forced 
convection. 

In carrying out the numerical calculations, we have assigned various values to Gr as 
recorded on Figs. 2-4 and Tables 1 and 2. Further, we have chosen the following values 
for the other parameters: 

N, = 0.1, N2 = 0.002, N3 = 0.02, a = 0.5, Pr = 9.0. 

This set of values of the non-dimensional parameters have been chosen keeping in view 
the thermodynamic restrictions on the material parameters mentioned by Eringen[7-91. 
We have chosen only one set of values of the parameters because the effect of the variation 
of the material parameters N,, N2 and N3 has already been studied in detail in Refs. [13] 
and [20] for different flow problems of micropolar fluids involving free convection. 
Throughout the computations, we have taken A< = 0.005 and A Y = 0.001. The numerical 
solutions have been obtained by the use of DEC-10 computer. 

Velocity field 
The velocity profiles have been plotted in Figs. 2(a) and (b) at different stations to show 

the effect of variation of Gr on velocity field. From Figs. 2(a) and (b), we observe that 
the velocity increases with increasing positive values of Gr which is due to more heating 
of the fluid. The velocity decreases as Gr goes from (- 0.5) to (- 4.0) due to more cooling 
of the fluid. Further, we observe that for a large value of Gr, in the case of fluid-heating 
velocity increases with the increases of 5. On the other hand, velocity decreases with the 
increase of 5 in both cases of fluid-cooling and of purely forced flow. However, this 
decrease in velocity is extremely small. Therefore, we do not present graphically the 
variation of the flow for different values of 5 for Gr < 0 and Gr = 0. The profiles in Fig. 
2(a) are compared with the corresponding profiles for a Newtonian fluid shown with 
broken lines. From Fig. 2(a), we see that the velocity for a micropolar fluid is always less 

I II III IV v VI 
Gr LO.0 20.0 la0 0.13 -2.0 -LO 

0.06 0.06 0.06 0.06 0.06 0 06 

Gr 5 
VII (L0.0,20.0,r0.0,0.0,-2~0 yL.01 0.005 

Fig. 3. Microrotation distribution: N, = 0.1; N2 = 0.002; N, = 0.02; Pr = 9.0. 
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1 I?r 

\ 
C61 \ 

\ 

; -l.;i j j, 

\ 

III 20.0 0 06 

“7_ !V 20.0 0.005 

Fig. 4(a). Temperature distribution: N, = 0.1; N2 = 0.002; NJ = 0.02; Pr = 9.0. 

than that of a Newtonian fluid. This is due to the fact that the micropolar fluids offer 
greater resistance to the fluid motion in comparison to a Newtonian fluid. The results 
presented in Fig. 2(b) have also been compared with the corresponding results for a 
Newtonian fluid but we have not shown this comparison in Fig. 2(b) because it does not 
differ qualitatively from what has been presented in Fig. 2(a). 

Microrotation field 
Figure 3 depicts the behaviour of microrotation for various values of Gr. We observe 

that the microrotation is very sensitive to the changes in values of Gr when fluid is being 

I 
2.3 0.5 1.0 1.5 2.0 2.5 

'1- 

Gr 

I - 2.0 
II - 0.5 

III L.0 

IV 10.9 

V 10.0 

VI LO.0 

VII LO.0 

f 
0.06 
0 06 
0.06 

0~005 
0.06 
0.005 

0 06 

Fig. 4(b). Temperature distribution: N, = 0.1; Ns = 0.002: N3 = 0.02: Pr = 9.0. 
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Table 1. Skin-friction parameter, (aF/aq),=,, with At = 0.005, A Y = 0.001 and 
2 =0.5 

Gr 

5 40.0 20.0 10.0 4.0 0.0 - 0.5 - 2.0 - 4.0 

Micropolar fluid (N, = 0.1, Nz = 0.002, Nz = 0.02, Pr = 9.0) 

0.005 0.5997 0.5236 0.4855 0.4627 0.4475 0.4456 0.4399 0.4323 
0.02 1.0796 0.7860 0.6230 0.5010 0.4460 0.4390 0.4180 0.3898 
0.04 1.5583 1.0660 0.7439 0.5855 0.4451 0.4381 0.4162 0.3887 
0.06 1.9805 1.1933 0.7558 0.6032 0.4435 0.4375 0.4151 0.3875 
0.1 2.0032 1.2005 0.7589 0.6112 0.4430 0.4370 0.4144 0.3855 

Newtonian fluid (N, = N2 = Nj = 0.0, Pr = 9.0) 

0.05 0.6325 0.5509 0.5101 0.4857 0.4694 0.4673 0.4612 0.4530 
0.02 1.1505 0.8363 0.6620 0.5498 0.4675 0.4636 0.4412 0.4110 
0.04 1.6635 1.1373 0.7928 0.5921 0.4652 0.4662 0.4408 0.4005 
0.06 2.1156 1.2741 0.7931 0.6508 0.4635 0.4609 0.4397 0.4000 
0.1 2.1175 1.2755 0.7935 0.6519 0.4621 0.4600 0.4389 0.3996 

Table 2. Rate of heat transfer parameter, [- (aO/aq),,O] with A5 = 0.005, 
A Y = 0.001 and a = 0.5 

Gr 

5 40.0 20.0 10.0 4.0 0.0 - 0.5 - 2.0 - 4.0 

Micropolar fluid (N, = 0.1, N2 = 0.002, N, = 0.02, Pr = 9.0) 
- 

0.005 0.9635 0.9626 0.9621 0.9619 0.9617 0.9616 0.9616 0.9615 
0.02 1.1781 1.0738 1.0070 0.9630 0.9307 0.9278 0.9191 0.9071 
0.04 1.3404 1.1955 1.0724 0.9955 0.9300 0.9272 0.9180 0.9066 
0.06 1.4590 1.2434 1.0988 1.0005 0.9285 0.9269 0.9006 0.8905 
0.1 1.4598 1.2752 1.1005 1.0018 0.9277 0.9265 0.9001 0.8900 

Newtonian fluid (N, = N2 = N, = 0, Pr = 9.0) 

0.005 0.9776 0.9767 0.9762 0.9760 0.9758 0.9757 0.9757 0.9756 
0.02 1.1998 1.0932 1.0248 0.9764 0.9472 0.9443 0.9353 0.9231 
0.04 1.3664 1.2183 1.0933 0.9967 0.9425 0.9412 0.9340 0.9213 
0.06 1.4875 1.2673 1.0995 1.0021 0.9402 0.9380 0.9321 0.9201 
0.1 1.4882 1.2677 1.1007 1.0023 0.9383 0.9367 0.9302 0.9187 

heated by the free convection current (T,,, > T,) while it is rather insensitive when fluid 
is being cooled by the free convection current. It is interesting to note from Fig. 3 that 
microrotation near the leading edge of the plate (5 = 0.005) is affected nominally by 
Grashof number Gr and these changes are too small to be shown graphically. Further- 
more, it seems from Fig. 3 that there exists a contact layer when fluid is heated more 
strongly. It may be mentioned here that for N3 +O, that is for vanishing microdiffusivity, 
similar phenomenon, as shown in Fig. 3, on microrotation, was observed by Willson[21] 
who calls it as a contact layer. We notice from Fig. 3 that these profiles cross each other 
in the fluid heating case. Similar profiles for microrotation were also obtained by 
Kfimmerer (221. 

Temperature field 
Some representative temperature profiles are given in Figs. 4(a) and (b). The broken 

lines in Fig. 4(a) indicate the corresponding curves for a Newtonian fluid. It is clear from 
Figs. 4(a) and (b) that the temperature decreases as Gr increases for cooling of the plate 
(Gr > 0) and vice-versa for heating of the plate (Gr c 0). Purely force convection results, 
which corresponds to Gr = 0, are plotted in Fig. 4(a) for comparison. For the same reason 
as in the case of velocity field we compare the results for the corresponding results of a 
Newtonian fluid only for a few selected values of Gr. These profiles show that there is a 
definite effect of microrotation as compared to Newtonian fluids. It is observed from Figs. 
4(a) and (b) that the effect of the changes in values of Gr on temperature is more 
pronounced for < = 0.06. 

The skin-friction parameter has been tabulated in Table 1. We note that skin-friction 
decreases with the decrease of Grashof number Gr. Further, we observed that in the case 
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of heating of the fluid (Gr > 0) skin-friction increases, for a fixed value of Gr with the 
increase of 5. Skin-friction decreases with the increase of 5 in the case of fluid-cooling 
(Gr < 0) as well as in purely forced flow (Gr = 0). The above noticed phenomenon is also 
observed for Newtonian fluids (Table 1). In comparison to a Newtonian fluid, the 
skin-friction is reduced for a miropolar fluid. 

In Table 2, we have recorded the values of the rate of heat transfer parameter (gradient 
of temperature) on the plate. We observe that [ - (iX?/i?q), =J decreases with the decreasing 
Gr. Furthermore, we notice from Table 2 that [ - (80 /cTq), =J increases with the increasing 
5 for fluid-heating case (Gr > 0) but the opposite happens in the case of fluid-cooling 
(Gr < 0) as well as forced flow (Gr = 0). Corresponding results for a Newtonian fluid have 
been recorded in Table 2. 

We have already seen from Figs. 4(a) and (b) that the temperature of a micropolar fluid 
is more than that of a Newtonian fluid. This can be explained as follows: 

The temperature distribution 0(5, r]) at any point (5, q) inside the boundary layer at 
a small distance ‘d’ from the plate can be approximately written as 

QL q) = (V&O) + d@‘(L 0), 

where 0’(& 0) = (LM/8q),=,. 
The difference between the temperature of a Newtonian fluid and a micropolar fluid 

at the same point inside the boundary layer can be written as 

P(& v ~~~~~~~~~~~ - [w, V)lMicropolar = d {we, W.kwtonian - rue, o)lMicropolar}~ (4.1) 

Since f3’(<, 0) is negative, and its absolute value is greater for a Newtonian fluid than that 
for a micropolar fluid (Table 2), the temperature of a Newtonian fluid is less than the 
temperature of a micropolar fluid in view of the relation (4.1). 
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