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Abstract-The effect of microstructure on the thermal convection in a rectangular box of fluid 
heated from below has been investigated by applying the micropolar fluid theory. The influence 
of lateral walls on the convection process in a rectangular box has been determined. The Galerkin 
method has been employed to get an approximate solution for the eigenvalue problem. The beam 
functions which satisfy two boundary conditions on each rigid surface have been used to construct 
the finite roll (cells with two nonzero velocity components depend on all three spatial variables) 
trial functions for the Galerkin method. The effect of variations of material parameters at the 
onset of convection has been presented graphically. It is observed that as the distance between the 
lateral walls increases the effect of one of the material parameters, characterizing the spin-gradient 
viscosity, at the onset of stability diminishes. A comparison has been made with the corresponding 
results for a Newtonian fluid. 

1. INTRODUCTION 

THE STUDY of buoyancy driven convection in a fluid layer heated from below is always 
important from the technological point of view, for it can reveal hitherto unknown 
properties of fluids of practical interest. Using a classical linear stability analysis, it is 
possible to predict the conditions for the onset of this convective motion, as well as the 
characteristic scale of the resulting flow pattern [ 11. At the onset of convection, the shape 
of the convective motion depends on the nature and geometry of the boundaries. 

The problem of convection in a rectangular box is considered as fundamental in the 
studies of thermal convection in enclosures. A wealth of articles concerning theoretical 
and experimental study of this problem has appeared in the pertinent literature. Davis 
[2] and Segel [3] have investigated the thermal convection in a rectangular box of fluid 
heated from below. The finite rolls with their axes parallel to the shorter side are predicted 
solely on the basis of a linear treatment in [2] and [3]. This is consistent with 
Koschmieder’s experimental observation [4] who found that, near the critical point, the 
cell pattern that emerges is strongly influenced by the geometry of the lateral boundaries. 
Davis [2] considered the lateral walls to be perfectly conducting. He found upper bounds 
of the critical Rayleigh number by using the Galerkin method. However, while using the 
Galerkin method, he violated the Weierstrass theorem, and his set of trial functions were 
not complete within the region of interest. Incorporating the Weierstrass theorem, Catton 
[5] has constructed a set of trial functions for the Galerkin method. Using the modified 
trial functions, Catton [5] has found meaningful results even for small aspect ratio where 
Davis [2] was unable to get any such results. Recently, McDonough and Catton [6] have 
studied two-dimensional convection in a square box using a mixed finite-difference 
Galerkin method. In this method, Galerkin procedure was applied in the horizontal 
direction and a finite-difference scheme was used in the vertical direction. Kihm et al. 
[7] have investigated the thermal instability in a fluid layer, subjected to a sudden change 
in surface temperature, by applying the marginal state method of modified frozen time 
analysis. This analysis also predicts, like the amplification theory, the proper dependence 
of wave number on Rayleigh number. Luijkx and Platten [8] have experimentally 
obtained the wave number at the onset of thermal convection in a long rectangular duct. 
The experimental data presented in [8] do not fit closely with the finite rolls approximation. 
Thermal convection in an inclined rectangular enclosure of low aspect ratio with heating 
from below has been studied by Ozoe et al. [9] using a finite-difference technique. 
However, the applicability of calculations in [9] to enclosures depends on the advance 
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postulate of a known cell width for each Rayleigh number, Prandtl number and pair of 
aspect ratios. An experimental and analytical study of the phenomenon of natural 
convection in a partially divided rectangular enclosure has been made very recently by 
Lin and Bejan [lo]. 

Although a number of studies on the thermal convection in enclosures have been 
reported in literature, these do not give ~tisfacto~ results if the fluid is a mixture of 
heterogeneous means such as liquid crystals, ferro liquid, liquid with polymer additives, 
which is more realistic and important from the technological point of view. For the 
realistic description of the flow of such rheologically complex fluids there exist several 
theories, e.g. polar fluids, dipolar fluids, couple stress fluids, anisotropic fluids, etc. 
However, it has been demonstrated by Ariman et al. [ 111 that for linear, viscous and 
isotropic fluids all these theories can be considered as equivalent to micropolar fluid 
theory [ 121. This theory deals with viscous fluids in which the microconstituents are rigid 
and spherical or randomly oriented. Polymeric fluids, colloidal fluids, liquid crystals, fluid 
suspensions, animal blood, etc. can be characterized by this fluid model. 

The effect of microstructure in the Benard problem of thermal instability has been 
studied by Ahmadi [ 131, Datta and Sastry [ 141 and Bhattacha~ya and Jena [ 151. But, to 
the best of the authors’ knowledge, the thermal convection in fluid with microstructures, 
in enclosures, has not yet been investigated. 

In this article, we have studied the effect of microstructure on the thermal convection 
in a rectangular box of fluid heated from below by applying the theory of micropolar 
fluids. The Galerkin method with trial functions of the type suggested by Catton [5] has 
been employed to get an approximate solution for the eigenvalue problem. The influence 
of lateral walls and material parameters on the convection process in a rectangular box 
has been determined. The results have been compared with the results of the corresponding 
problem of a Newtonian fluid. 

2. FORMULATION OF THE PROBLEM 

We consider an incompressible fluid with microst~ctures confined in a rectangular 
box of height d, having no body couple and no heat source. The domain of flow is /xl zz 
h,/2, lyl i h2/2, and IzI I l/2, where x, J f, z are the dimensionless coordinates of a point 
in the flow field referred to the centre of the box as origin. The characteristic length used 
for nondimensionalising the coordinates is d. The base of the box is kept at a higher 
temperature than the top so that an adverse temperature gradient (p along the vertical 
direction (along the z axis) is maintained. We assume that instability sets in via a 
convective marginal state so that the terms with time derivatives will not appear in the 
equations governing the disturbances [ 141. The linearized equations governing the 
disturbances [ 141, in vector notation, now can be written in nondimensional form as 

div V = 0. (2.1) 

( 1 + N, )V2V + NIV X v + Rack - gradp = 0, (2.2) 

N7V(V * v) + N3V2v + NI(V X V - 2v) = 0, (2.3) 

V2B + MI - Ns(V X Y) + k = 0. (2.4) 

In the above equations, V, Y, B and p are respectively the velocity, microrotation, 
temperature and pressure disturbances measured in units of K/d, K/d’, cpd and t&d’, 
where K is the thermal diffusivity and p is the coefficient of viscosity. k is the unit vector 
in z direction and w is the third component of V. Ra is the Rayleigh number and N,, 
N3, N5 and N7 are the material parameters defined as 

Ra = mMd4 
W ’ 

N, =s, N3 = 2 
/.td2 ’ 

N5 = -.!!-.- 
/-wcvd2 ’ 

N7 = (a + @ 
P pd2 ’ (2.5) 

where c, is the specific heat of the fluid at constant volume, g is the acceleration due to 



The effect of microstructure on the thermal convection 71 

gravity, p. is the mass density, and X is the coefficient of thermal expansion in the 
Boussinesq equation of state. The dimensionless parameters Nr , N3, Ns and N7, respectively, 
characterize the vortex viscosity K, spin-gradient viscosity y, the micropolar heat conduction 
S, and gradient viscosities LYI and ,f3. 

The boundaries are all considered to be rigid and perfect heat conductors so that 

v = 0, v = 0, B=O on Ix/ = $h,, IYI = $h*, 121 = $. (2.6) 

Equations (2.1)-(2.4) together with the boundary conditions (2.6) constitute an eigenvalue 
problem for the Rayleigh number. It may be remarked here that eqns (2.1)-(2.4) reduce 
to the corresponding equations for Newtonian fluids [2, 51 by setting Ni = Nj = Ns 
= N-, = 0. 

3. METHOD OF SOLUTION 

In order to get an approximate solution for the eigenvalue problem we have employed 
the Galerkin method. The advantage of this method is that we can use the original full 
system of equations rather than a higher-order equation obtained by cross-differentiation 
and elimination as in the case of the variational method. The details of the Galerkin 
method are available in [ 161. 

In accordance with the Galerkin method we can represent V, v, t3 and p as follows: 

V= :aiVi, 
cc 

II= CbiYi, B = 5 C<&j, P= %dtPi, (3.1) 
i=l i=1 i=l i=i 

where Vi, vi, B;, pi are all functions of X, y and z. Substituting the first N terms of eqns 
(3.1) into eqns (2.1)-(2.4) and applying the interior orthogonality relations [16] for the 
resulting system of equations we get 

N 

+ Ra C Ci Bik l VjdV = 0, (3.2) 
i=l s V 

NI g ai 

i=l 

S, (D X Vi) * vjd V + $ bi l, [N,V(V . vi) + N3V%i - 2Nivi] * vid i/ = 0, (3.3) 
i=l 

wisjd V - Ns 5 bi 
i=l s 

(V X vi) * kB,dV + g Ci 
V i=l s 

(V20i)0jd L’ = 0, (3.4) 
V 

where j = 1, 2, . . . , N. 
It may be noted that 

$ dj J grad pi l Vjd I’ = 5 di J [V * (PiVj) - PiV * Vjjd I’ 
i=l V i=l V 

= 5 di ipiVj*dS (since div Vj = 0) 
i= I 

= 0 (since Vj = 0 on the boundary). 

Thus, the pressure term in eqn (3.2) vanishes. 
Equations (3.2)-(3.4) have nontrivial solutions if and only if the secular dete~inant 

is zero, that is, if 

MIX Ml2 Ra Ml3 

M2l M22 0 = det M = 0, (3.5) 
m31 M32 M33 
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where M,,, M12, M13, M2,, Mz2, MS,, Mj2 and MS3 are N X N matrices defined as 

(MI I)lj = ( 1 + N,) J (V’V,) * Vjd V, 
V 

(M12)ij = NI S, P X vi) * VjdK 

(M13)ij = Jv~A*V,dK 

Of2 1 Jo = NI S, (V X Vi) * vjd V, 

W22)ij = s, W7W’ - vi) + NsV2vi - 2Nrvi] . VjdI’, 

(M3r)ij = S, w#jdK 

(M32)o = -Ns J (V X vi) * k0jdV, 
V 

(M33)o = S,. (V2~i)~jd V. 

(3.6) 

Selection of trial functions 
In order to solve (3.5), we have considered trial functions which have properties of a 

finite roll, that is, cells with two nonzero velocity components dependent on all three 
spatial variables [2], and satisfy the boundary conditions and also the continuity equation 
exactly. 

The trial functions for the velocity components (Ui, tJi, Wi) are constructed by expanding 
them in terms of beam functions. The trial functions for the components of microrotation 
and temperature are constructed from a linear combination of a complete set of 
orthogonal functions. The trial functions are selected to allow for the possibility of fully 
three-dimensional flow configurations. The construction of trial functions for velocity 
and temperature has been done in a similar way by Catton [5]. The trial functions used 
in the present analysis have been presented in Appendix A. 

Substituting the trial functions (A.l) of Appendix A into eqns (3.6) and carrying out 
the integration as indicated, we obtain the roots of det M = 0, i.e., the values of Ra for 
the set (A.l). Similarly, making use of other sets of trial functions (A.2)-(A.4), we obtain 
the corresponding values of Ra. The minimum among all these Ra’s gives the critical 
Rayleigh number Ra, for this problem. The integrals (3.6) of various combinations of 
trial functions (A.l)-(A.4) are available in [ 171. In the calculation of Ra, we have 
truncated the element of the secular determinant (3.5) at finite N. We increased N until 
five significant figures of accuracy were obtained in Ra, for each of the sets of trial 
functions (A.l)-(A.4). The above procedure was carried out for various horizontal 
dimensions hr and h2. For numerical computations, we have chosen the following values 
for the parameters: 

N, = (0.1, 1.0, 1.5), N3 = (2.0, 4.0, 6.0), 

Ns = (0.5, 1.0, 1.5), N7 = (0.0, 1.0, 2.5). 

These values of N, , N3, Ns and N7 satisfy the nondimensional equivalent of the 
thermodynamic restrictions given by Eringen [ 181. In accordance with this restriction N, , 
N3, Ns and N, are all non-negative. 

Ahmadi [ 191 and Tozeren and Skalak [20] have stated that the parameter N, depends 
on the shape and concentration of the microelements. For a given shape of the 
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microelements Nr directly gives a measure of concentration of the microelements. The 
parameters NJ and N7 can be thought of as fluid properties depending on the relative size 
of the microstructure in relation to a geometrical length. The parameter NS depends on 
the heat conduction of the microelements. 

4. RESULTS AND DISCUSSION 

It is worth mentioning that convection in a box gives rise to two types of dependencies 
of the critical Rayleigh number upon horizontal dimensions for finite rolls. The first type 
occurs when a finite roll has its width varied which is the same as in the problem of an 
infinite layer [13-l 51. The second type of dependence is obtained when the length of a 
finite roll is varied. This type of dependence is not present in the infinite layer where 
rolls have infinite lengths. In the present discussion we confine ourselves to the second 
type of dependence by studying the variation of aspect ratios at the onset of convection. 
The results of the present investigation are summarized in Table 1 and Figs. l-5. 

We have recorded in Table 1 the effect of lateral walls (i.e. the variation of aspect 
ratios) on the onset of convection. Some representative stability curves for different values 
of aspect ratios hr and h2 have been plotted in Fig. 1. We see from Fig_ 1 that there exist 
kinks for small values of hi/& or h2/hl. This happens because flow goes from single roll 
to multiple rolls configuration. A similar phenomenon has been observed by Davis [2] 
and Catton [5] for a Newtonian fluid. For the sake of direct comparison, the results for 
a Newtonian fluid have been included in Table 1 and Fig. 1. It is observed from Table 1 
and Fig. 1 that the critical Rayleigh number of the present problem is always higher than 
that of a Newtonian fluid. From this we conclude that the fluid with micros~cture 
heated from below is more stable in comparison to a Newtonian fluid. This is in 
agreement with the results obtained in [ 131. Further, we notice from Fig. 1 that the 
critical Rayleigh number of the present problem at hi = 1.8, and hZ = 1.8 is quite close 
to the critical Rayleigh number obtained for a micropolar fluid in an infinite channel for 
N, = 1.5, NJ = 2.0 and Ns = 1.0, and with no heat source [ 17, 2 11. It is, in fact, expected 
because increase in h, and hz leads to the case of infinite layer. However, for a Newtonian 
fluid the corresponding values of the aspect ratios are hl = h* = 6.0 f5l. 

The effects of variation of N1, N3, Ns and N, at the onset of convection have been 

Table 1. Critical RayIeigh number for the onset of convection for various aspect ratios 

hl 
hi? 

0.05 0.1 0.8 1.0 I.2 I.4 1.6 

Ni = 1.5, N3 = 2.Q N5 = 1.0, N7 = 2.5 

0.05 9.06239 8.90648 8.81362 8.81199 8.81093 8.81020 8.80967 

0.1 8.90648 7.86183 7.62142 7.61752 7.61507 7.61340 7.61219 

0.8 8.81362 7.62142 4.61230 4.54259 4.49892 4.46964 4.44896 

1.0 8.81199 7.61752 4.54259 4.41054 4.35459 4.31675 4.28991 

1.2 8.81093 7.61507 4.49892 4.35459 4.29650 4.25134 4.21914 

1.4 8.81020 7.61340 4.46964 4.31675 4.25134 4.23683 4.19999 

I.6 8.80967 7.61219 4.44896 4.28991 4.21914 4.19999 4.17960 

N, = 0.0, N3 = 0.0, N5 = 0.0, N7 = 0.0 

0.05 8.84731 7.98156 7.58113 7.57006 7.56342 7.55711 7.54862 

0.1 7.98156 7.76704 6.78243 6.77312 6.76412 6.75623 7.15223 

0.8 7.58113 6.78243 4.08941 4.01972 3.97603 3.94475 3.92603 

1.0 7.57006 6.77312 4.01972 3*84725 3.82168 3.79386 3,76701 

1.2 7.56342 6.76412 3.97603 3.87168 3.77357 3.72843 3,69618 

I.4 7.55711 6.75623 3.94675 3.79386 3.72843 3.68391 3.64706 

1.6 7.54862 6.75223 3.92603 3.76701 3.69618 3.64706 3.62677 
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Fig. I. Critical Rayleigh number for various aspect ratios. 

shown in Figs. 2-5, respectively. It is found that the increase of N1 or NS increases the 
critical Rayleigh number whereas the increase of N3 or N, decreases the Rayleigh number. 
This means that increase in N, or NS delays the onset of instability while the increase in 
NJ or N7 hastens. 

The concentration of microelements increases with the increase in NI. Therefore, a 
greater part of the kinetic energy of the system is consumed in developing gyrational 
velocities of the fluid, and as a result, the onset of instability is delayed. When NS 
increases, the heat induced into the fluid is also increased, thus reducing the heat transfer 
from the bottom to the top. The decrease in heat transfer is responsible for delaying the 
onset of instability due to any increase in NS. However, increase in N3 or NT increases 
the couple stress of the fluid, which causes a decrease in microrotation and hence makes 
the system more unstable. 

An interesting phenomenon can be observed from Fig. 5. When h, increases, the effect 
of N7 seems to reduce gradually. The same is true when h2 increases because of the 
symmetric nature of this problem. This means that as the distance between the lateral 
walls increases, the effect of N7 on the onset of stability diminishes. 

We notice from Figs. 2-5 that Nr and Ns play a signif&nt roll at the onset of stability 
in comparison to NX or N7. Therefore, we conclude that the effect of variation of 
concentration and heat conduction of the microelements is more important in the study 
of stability of flow under consideration as compared to the effect of the variation of the 
size of the microelements. 
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APPENDIX A 

Finite roll trial functions 
1. Odd number of finite x rolls: 

% = - ; C&i) cos [(2q - l)rrj]c:(z), 
P 

u,, = 0, 

%r = ; q(x) cos [(2q - l)?rj]C,(z), 
P 

f, = sin (2~~2) sin (Zqsry) cos [(2r - l)*z], 

g,, = cos [(2p - l)rrz] cos [(2q - l)nj] cos [(2r - l)rz], 

h,, = cos [(2p - l)?rX] sin (2qry) sin (2r7rz), 

0,, = sin (2p+ cos [(2q - l)lry] cos [(2r - l)nz]. 

2. Even number of finite x rolls: 

r&l, = - z S,,(z) cos [(2q - l)qj]C,(z), 

u&q, = 0, 

i-%r = ; Sdz) cos [(2q - l)aj]C,(z), 

fm, = cos [(2p - l)?rt] sin (2qny) cos [(2r - l)rz], 

g,, = sin (2psrX) cos [(2q - I)+] cos [(2r - l)*z], 

hM, = sin (2psrX) sin (2qrj) sin (2r7rz), 

0,, = cos [(2p - l)lrT] cos [(2q - l)*j] cos [(2r - l)*z]. 

64.1) 

64.2) 
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3. Odd number of finite y rolls: 

upq, = 0, 

v,, = - F cos [(2p - I)?rX]C~~)c:(z), 
P 

%W = $ cos [(2p - 1)7rx]C~y)c,(z), 
I? 

j,, = cos [(2p - 1)7Gx] cos [(2q - I)7+] cos [(2r - I)az], 

g,, = sin (2pri) sin (2qrf) cos [(2r - l)*z], 

h,, = sin (2p*X) cos [(2q - l)+p) sin (2r?rz), 

0,, = cos [(2p - 1)xX] sin (2qry) cos [(2r - 1)x2]. 

4. Even number of finite y rolls: 

u&q, = 0, 

VW = - 2 cos [(2p - I)7rx]S‘r(j)c:(z), 

WZW = ; cos [(2p - l)rrX]Sb(j)C,(z), 

f, = cos [(2p - l)?rZ] sin (2qrj) cos [(2r - I)rz], 

g,, = sin (2prx) cos [(2q - l)nj] cos [(2r - I)Tz], 

hw, = sin (2p?rX) sin (2qQ) sin (2mz), 

em, = cos [(2p - 1)7rX] cos [(2q - I)rj] cos [(2r - l)az]. 

(A.3) 

(A.4) 

In the above expressions, X = x/h, and 9 = v/h,. C,,(Z) and SAX) are, respectively, the even- and the odd- 
beam functions, defined as 

cash Xg cos A&? 
Cd?)=--- 

cash X,/2 cos &./2 ’ 

and satisfy the conditions Cdl/2) = Cd l/2) = Sd l/2) = Sb(1/2) = 0, where the mime denotes differentiation 
with respect to the independent variable. The method for the construction of the beam functions has been 
described in [22]. 


