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Abstract-. -A critical study on the stability of a hot layer of micropolar fluid heated from below 
with free boundaries has been investigated. The analysis shows that the method by which the 
previous investigators (Datta and Sastry, and Pkez-Garcia and Rubi) obtained the critical 
Raylcigh number is not justified and the tinal result ohtained thereby is erroneous. The correct 
solution to the problem has been presented. Moreover. it is found that the possibility of having 
an overstable marginal state which was shown by one of the previous investigators (Pkrez-Garcia 
and Rubi) is not justified. The correct approach proves the validity of the principle of exchange 
of stabilities for this problem. The results show that the criteria of micropolar stability have some 
mtercsting features having no classical analogue. 

I. INTRODUCTION 

THE THEORY of micropolar fluids has been developed by Eringen[ I] to explain the behaviour 
of fluids which exhibit certain microscopic effects arising from the local structure and 
micromotion of the fluid elements. Such fluids can be subjected to surface and body couples 
only and material points in a vdume element can undergo only rigid rotational motions 
about their centers of mass. Eringen[2] further extended the theory of micropolar fluids to 
take into account thermal effects. Physically, this theory may be considered as a satisfactory 
model for description of the flow behaviour of liquid crystals, real fluids with suspensions, 
polymeric fluids and animal blood. On the basis of this theory, experimentally observed 
phenomenon of skin-friction reduction (up to 30-35:{,) near a rigid body[3,4] can also be 
explained satisfactorily. 

The stability criteria for a micropolar fluid have aroused a great amount of interest in 
recent years[S-81. In stability analysis, coupling between thermal and microinertial effects 
has been ignored by Ahmadi[S]. In [5], it has been found that the principle of exchange of 
stabilities is valid and further, there is no region of subcritical instability for a micropolar 
fluid heated from below. When the coupling between thermal and microinertial effects is 
included. the results obtained by Ahmadi were found to be erroneous[6]. Incorporating the 
coupling between thermal and microinertial effects, Datta and Sastry[7] have presented the 
plot Ra(rr), the critical Rayleigh number corresponding to the wave number LI. Recently, 
Perez-Garcia and Rubi[8] showed the possibility of having an overstable marginal state 
when the coupling between thermal and micropolar effects is included. In the present paper, 
we observe that even after taking into consideration the coupling between thermal and 
microinertial effects, the principle of exchange of stabilities is valid (Section 3). We also find 
that the method employed by Dutta and Sastry, and Perez-Garcia and Rubi is not justified 
and the critical Rayleigh number obtained thereby is erroneous. A correct solution to the 
problem of finding the critical Rayleigh number is presented in Section 4. 

2. LINEAR THEORY AND THE CHARACTERISTIC EQUATION 

We consider an infinite horizontal layer of an incompressible micropolar fluid of finite 
depth, heated from below, having no body couple and no heat source. The normal mode 
analysis based on the perturbation equations for this case has been given in great details in 
[6-S]. For the sake of brevity, this analysis is not presented here. The final form of linearized 
nondimensional equations governing the disturbances as given by Perez-Garcia and Rubi[8] 
is 

(D’- k’)[(l + K)(D2 - k2) - a]W + K(I)” - k2)c - I&&~@ = 0 (2-l) 

[c,(L)’ - k2) - 2K -j;7)G - K(D’ - li”)H’= 0 (2.2) 

[(D’-~*)-PP~c]O+ W-c@=0 (2.3) 
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with the boundary conditions 

W=D2W=G=O=Oatz=0,1. (2.4) 

In the above equations, Pr is the Prandtl number, Ra is Rayleigh number, k is the wave 
number, o is the stability parameter, K, .i: C,, and 8 are the micropolar fluid parameters. 
Notations used in eqns (2.1)-(2.3) and the boundary conditions (2.4) are same as given 
by Perez-Garcia and Rubi[8], only with the exception of Uz replaced here by W for our 
convenience. The reader is referred to Ref. [8] for a detailed account of these notations 
and parameters. For a direct comparison of our results with that of Datta and Sastry[7]. 
it may be remarked here that Datta and Sastry used the parameters 6, R, A and n, which 
have the following relations with the parameters used in this paper: 

K=R, J=n,, C,=RIA, (s=f. 

Further, it may be noted h_ere that under the thermodynamic restriction given by 
Eringen[2], Pr, K, j; Co and 6 are all non-negative. 

In view of eqns (2.1)-(2.3) and the boundary conditions (2.4), we find that 
DC2”‘)W = DC2”)0 = DC2”‘)G = 0 for z = 0, 1 and m = 1, 2, . . . . To consider a general case, 
we take 

[W, G, @I= [W,, G,, O,] sin nxz (2.5) 

and substitute into eqns (2.1~(2.3) to get the following relationships between W,,, G, and 

0” 

[(l + K)k,’ + a,k,] W, - Kk,G, - Rak20, = 0 (2.6) 

Kk, W,, - (C,,k, + 2K +i;r,,)G, = 0 (2.7) 

W, - $G, - (k, + Pro,)@, = 0, (2.8) 

where k, = n2n2 + k* and a is replaced by a,,. Eliminating W,,, G, and 0, from eqns 
(2.6~(2.8), we get the following characteristic equation in an 

A,a,’ + B,a,’ + C,,a,, + D, = 0, (2.9) 

where 

A, = jPrk, 

B, = (C&, + 2K)Prk, + [Pr(l + K) + lljkn2 

C,, = [(l + K)(C,k, + 2K) - K2]Prk: + (C,k, + 2K)k,,2 +I(1 + K)k,’ -jRak2 

D, = Rak2[(K6 - C,Jk, - 2K] + [C& 1 + K)k, + K(2 + K)]k:. (2.10) 

3. THE PRINCIPLE OF EXCHANGE OF STABILITIES 

Substituting a, = an(‘) + ia, in eqn (2.9), where a,,(‘) and an(i) are the real and the 
imaginary parts of a,, respectively, and separating out the real and imaginary parts, we 

get 

and 

An[ancr)’ - 3a,(‘)‘a,(‘)] + B,[a,,(‘)’ - a,(‘)*] + CJa,(‘)] + D, = 0 (3.1) 

a,(i)[A,{3a,(‘)2 - a,(‘)‘) + 2B,,a,(” + C,,] = 0. (3.2) 
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To investigate the overstability, we assume o,(i) # 0 and finally, after eliminating cr,(‘) 
between eqns (3.1) and (3.2), we get the following equations in cr,i’) 

26A,$,(“‘+ 22A.)Bna,(“5 + 7An3Cn~,(‘)4 + [2A,2(3BnCn - A,D,) - 8A,B,3]0,(‘) 

+ [4B,(A,‘D, - Bn3) - An2Cn2]~,(‘)2 - 2(A,C, - 2B,,*)(A,D, - B,C&,” 

- (A,D, - B&J2 = 0. 

For critical state, at least one root of a”(‘) must be zero whereas all other roots must be 
negative. Thus, taking A$), - B,C, = 0 to give the critical Rayleigh number for over- 
stability, the above equation reduces to the form 

26A,b,(‘)6 + 22A,3Bnan’r)5 + 7An3Cnc,(‘)4 + 4A,B,,(A,C, - 2Bn2)~,(‘)’ - (A,C, - 2B,2)2~,(‘)’ = 0. 

(3.3) 

It is clear from eqn (3.3) that though two roots of an(‘) are zero, the product of the other 
four roots is negative showing that either three or one root is positive. Since this result 
is true for any n (n = 1,2, . . . ), we do not get an oscillatory marginal state when a,(‘) # 0. 
We therefore conclude that the marginal state must necessarily be convective and hence 
the principle of exchange of stabilities is valid for this problem. 

It may be mentioned here that the conclusion that the marginal state has got the 
possibility of being overstable which was arrived at by Perez-Garcia and Rubi[8] is not 
justified since only setting real part of rr’n to be zero, one does not get the marginal state 
unless all other values of c_ are found to have non-positive real parts. This criterion was 
not applied by Perez-Garcia and Rubi which led to an erroneous result. 

4. THE CRITICAL RAYLEIGH NUMBER 

Let the disturbance given by 

[W, G, 01 = [W,,, G,, O,] sin nltz . exp (Ike + ik,y + (TJ), (4.1) 

be marginally stable. This means that at least one root of a,, in eqn (2.9) must be zero whereas 
none of the other roots should be positive. Thus, from (2.9) and (2.10), we have 

Ra = GU + m, + KC2 + K) k3 
2K + (C, - Kd)k, 

. p = (Ra), (say). 

With this value of Ra, the value of C, is obtained from (2.10) as 

c = (W,Z + S&n + S,Wn 
n 

2K + (Co - Kd)k, 
= fJ$ (say), 

(4.2) 

(4.3) 

where 

t, = S,k,,2 + S,k,, +.S,, 

1, = 2K + (C, - K&)k,,, 

S, = (Co - Kg)[(l + K)(PrC, t-7) + C,l -jza(l + K), 

S, = K(C,, - Ki-)[(2 + K)Pr + 2]+ 2KC,,[(l + K)Pr + l] f K2j; 

S, = 2K2[(2 + K)Pr + 21, (4.4) 

whereas A,, and B,, remain the same as given in (2.10). Since none of the remaining roots of 
eqn (2.9) is positive, A,, B,, and C,, must have same sign. Due to the restrictions given by 
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Eringen[2], signs of A,, as well as B, are positive. It is, therefore, required to show that C‘,, 
is positive in order that the disturbance given in eqn (4.1) is marginally stable. 

In subsequent analysis. we consider the following cases separately. 

In this case (Ru),,‘s for various values of n are positive and moreover, it can be easily seen 
from eqn (4.2) that 

(Ra), <(Ra)*<(Ru),<.... (4.5) 

Further, we observe from (4.4) that Sz and S, are positive. Therefore, if S, is positive, that 

is, if 

C:, is positive and (Ra), , the critical Rayleigh number, is obtained from eqn (4.2) as (Ru), 

Thus. we have 

(Ru), = Cdl + K)(lr* + k*) + K(2 + K) . (n’ + k’)3 
c 

2K + (C,, - K6)(n1 + k’) k? ’ (4.6) 

jC,( 1 + K) 

’ ’ Co - K6 < (1 + K)(PrC, +I? + C,,’ 

we find that though (Ra), < (Ra): < (Ra), < , S, is negative, and, therefore, we have to 
consider only those n for which C, 2 0. We see that z2 > 0 for all k,. Moreover, t, > 0 only 
for those values of k, lying between the two roots oft, = 0, one of which is positive and the 
other negative. If c(* be the positive root of t, = 0, then we have 

(4.7) 

Obviously k, is greater than the negative root. Therefore, C,, is positive only for those n 
corresponding to the particular wave number k, for which k, I a *. It may be mentioned here 
that if c( * < n’, no such n exists and hence convective marginal state does not exist. In case 
c(* > rc’, the marginal convective state exists only for those values of k for which 
k’ < (cc* - rr’), and (Ra),. is obtained as (Ra), given by eqn (4.6). 

Chse II. C,, - K6 < 0 
In this case also, we observe that t, > 0 for those values of k, lying between the two roots 

off, = 0, one being positive (c( *, say) and the other negative. Further, we observe that t, > 0 
for k, -c M and t, < 0 for k, > M, where M is given by 

Thus, if 

M = 2K/(K6- Co). 

-’ - min (a *, M) iI - (4.8) 

and 

y2 = max (cz *, M), (4.9) 

C, is positive only when either n2rc2 I k, < y, or k, > yz. It is noted that (Ra), > 0 in the case 

n%r’ I k, < y, and (Ru), < 0 in the case k, > y?. From (2.9), we find that if Ra = (Ru), + 6R,, 
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where 6 R, is a small change in Ra, then to the first order of the small quantity rr,,, which was 

zero when Ra = (Ra),, assumes the value da,, 

da, = y [2K - (KS - CO)/&]. 
n 

Hence for k, < M any increase in the value of Ra from (Ra), leads to instability and for 
k, > M any decrease in the value of Ra from (Ra), leads to instability. Since C,, - Ki? < 0, 

is noted after calculations that the general order relation 
~Ru), < (Ra), < (Ra), < .‘.oF”,ot valid for all k’s. We, therefore, conclude that to obtain 
(Ra), , the critical Rayleigh number corresponding to the particular wave number k, all n’s 
are to be considered for which k, < y,. In case such n’s exist, we find that the minimum 
of the corresponding (Ra),‘s is positive and gives one value of the critical Rayleigh number 
lying on the positive branch of the stability curve. Similarly, for the same value of k, we 

consider all n’s for which k, > y2. We find that the maximum of the corresponding (Ra),‘s 

is negative and gives another value of the critical Rayleigh number lying on the negative 
branch of the stability curve. We further observe that for any value of k > 0, there exists 
n such that k, > yz and hence the negative branch of the stability curve exists for all k. If 
7, < n’, we find that no positive branch of the stability curve exists and if y, 2 rc*, then 
for all those values of k for which k2 I (y, - n’) the positive branch exists and ceases to 
exist for those values of k for which k* > (y, - rr’). 

5. CONCLUSIONS 

We have shown in Section 3 that the principle of exchange of stabilities is valid even 
when the coupling between thermal and microrotational effects is taken into account, 
which was not done by Ahmadi[5] or any other investigators. 

We find after combining the results of the various case studies in Section 4 that if 

JC’,( 1 + K) 

Co - K6 2 (1 + K)(PrC, +I? + Co’ 

the convective marginal state exists and the critical Rayleigh number is the same as given 
by Datta and Sastry[7]. If 

JC,(l + K) 

’ ’ Co - K6 < (1 + K)(PrC, +jT + Co’ 

we find that the convective marginal state exists only if t(*, given by eqn (4.7), is greater 
than rr2 and even in that case, convective stability exists for only those disturbances with 
wave number k such that k* < (a* - 7~‘). Moreover, when such a disturbance exists in the 
marginal state, the critical Rayleigh number is found to be of the same form as in the earlier 
case. 

If CO - Kg < 0, we find that though a negative branch of the convective stability curve 
always exists, the positive branch can exist only if (i) y, 2 rr2, where y, is given by (4.8) 

and (ii) k2 I (y, - x2). Therefore, the asymptote separating the positive and the negative 
branches as presented by Datta and Sastry (Ref. [7], Figs. l-3) does not exist. Considering 
all the possibilities, we find that the assumption (Ra), = (Ra), in all cases, as was made 
by previous investigators[7,8], is not justified. 
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