
Prediction Based Dynamic Load Balancing Techniques in Heterogeneous Clusters

Pushpendra Kumar Chandra , Bibhudatta Sahoo
National Institute of Technology Rourkela, Orissa

pushpendrachandra@gmail.com

Abstract-The goal of load balancing is to assigns to each node a
number of tasks proportional to its performance. Many load
balancers have been proposed that deal with applications with
homogeneous tasks but applications with heterogeneous tasks
have proven to be far more complex to handle. In this paper we
present a load balancing techniques that can deal with
applications with heterogeneous cluster. Here we are
considering three type of load I/O, CPU, MEMORY. For
efficient load balancing we are proposed a new techniques that
reduce the average response time .For that we are using the
prediction scheme that predict the requirement of task and then
according to prediction scheme this techniques assign the task to
best suitable node.

Keywords: Heterogeneous cluster, I/O intensive load, Load
balancing

I. INTRODUCTION

Load balancing (LB) is a critical issue in parallel and distributed
systems for the efficient utilization of the computational resources.
There is a large body of literature on load balancing and all the
proposed load balancing algorithms can be broadly characterized as
static and dynamic. The focus of this paper is on the dynamic load
balancing algorithms and the processing times of the jobs are
known at the time of execution. Load balancing can be static or
dynamic.

 In static scheduling, the assignment of the tasks to the nodes is
done before the execution of the program. Information regarding
task execution time and processing resources is assumed to be
known at compile time. A task is always executed on the node to
which it is assigned.

Dynamic scheduling is based on the re-distribution of processes
among the processors during execution time. This redistribution is
performed by transferring tasks from heavily-loaded processors to
lightly-loaded processors with an aim to minimize the processing
time of the application. The advantage of dynamic load balancing
over static scheduling is that the system need not be aware of run-
time behavior of the application before execution. The flexibility
inherent in dynamic load balancing allows for adaptation to
unforeseen application requirements at run-time. The major
disadvantage of dynamic load balancing schemes is the run-time
overhead due to:

[1] The load information transfer among processors,
[2] The decision-making process for the selection of processes

and processor for job transfers, and
[3] The communication delay due to task relocation itself.

Dynamic LB algorithms can be further classified into a

centralized approach and a decentralized approach. In the
centralized approach only one node in the distributed system acts as
the central controller. It has a global view of the load information in

the system, and decides how to allocate jobs to each of the nodes.
The rest of the nodes act as slaves; they only execute the jobs
assigned by the controller. The centralized approach is more
beneficial when the communication cost is less significant, e.g. in
the shared-memory multi-processor environment.

The main motivation of our study is to propose a centralized
dynamic LB algorithm that can cater for the following unique
characteristics of practical distributed Computing environment:
• Heterogeneous system: There may be a difference in the

hardware architecture, operating systems, computing power
and resource capacity among sites. In this study,
heterogeneity only refers to the processing power of site.

• Effects from considerable communication delay: The
communication overhead involved in capturing load
information before making a dispatching decision can be a
major issue negating the advantages of job migration. We
should not ignore the considerable dynamic communication
delay in disseminating load updates.

Most load balancers were designed to handle applications with
homogeneous tasks, for example data parallel application or tree-
based algorithms. A lot of applications however consist of
heterogeneous tasks, i.e. tasks performing different operation or
operating on different types of data. Due to uneven job arrival
patterns and unequal computing capacities and capabilities, the
computers in one node may be overloaded while others in a different
node may be under-utilized. It is therefore desirable to dispatch jobs
to idle or lightly loaded computers to achieve better resource
utilization and reduce the average job response time.

The rest of the paper is organized as follows. In the section 2 that
follows, related work in the literature is briefly reviewed. In section
3, we describe the system model. In section 4 we describe the novel
load balancing algorithm. Finally concludes the paper by
summarizing the main contribution of this paper.

II. RELATED WORK

There are many approaches to balancing load in disk I/O resource
can be found in literature [1][2][3][4][6][10]. Xiao Qin[1] proposed
a algorithm IOLB and compare this algorithm with conventional
CPU- and memory-aware load balancing schemes and shows that
the IOLB algorithm significantly improves the resource utilization
of a cluster under I/O-intensive workload.

Mais Nijim Tao Xie,2005 developed a performance model for
self-manage computer systems under dynamic workload condition,
where both CPU- and I/O-intensive applications are running in
computer systems. They shows that the controller is capable of
achieving high performance for computer systems under workloads
exhibiting high variabilities.
Xiao Qin et al.[4] proposed a feedback control mechanism to

improve the performance of a cluster by adaptively manipulating the
I/O buffer sizes. The primary objective of this mechanism is to
minimize the number of page faults for memory-intensive jobs while

189

improving the buffer utilization of I/O-intensive jobs. The feedback
controller judiciously configures the weights to achieve an optimal
performance. Meanwhile under a workload where the memory
demand is high, the buffer sizes are decreased to allocate more
memory for memory-intensive jobs, thereby leading to a low page-
fault rate. Increasing attention has been drawn toward I/O-intensive
application. Kandaswamy et al.[10] examined optimization
techniques and architecture scalability. They evaluated the effect of
the techniques using five I/O-intensive applications from both small
and large applications domain.

Xiao Qin et al.[6] developed two effective I/O-aware load-
balancing schemes, which make it possible to balance I/O load by
assigning I/O-intensive sequential and parallel jobs to nodes with
light I/O loads. However, the above techniques are insufficient for
automatic computing platforms due to the lack of adaptability. We
proposed a algorithm that take all the parallel task and it balance the
I/O-intensive load with effective manner.

III. SYSTEM MODEL

In this study we have considered a cluster computing platform of
heterogeneous system in which set of N={N1 ,N2 , N3 …..Nn} n
nodes are connected via a high speed network. Each node in this
model composed of a combination of various resources including
processor, memory, disk , network connectivity and every node is
differ with their processor, memory and disk. A load manger or
master node is responsible for load balancing and monitoring
available resources of the node. Fig 1 shows the queuing model for
load manager.

Fig. 1.Queuing model for load manager

Load manager or master node process all arrival task in a FCFS
manner. Here we are assuming that all task are to load manager is
poison process. After being handled by load manager task are
dispatched to one of the best suited node for execution. The nodes,
each of which contains a local queue, can execute task in parallel.
Load manger is composed of three modules: (1) predictor; (2)
selector; (3) scheduler;

When new task is arrives at load manger, the identification of
program being executed is sent to the predictor which predicts the
resource requirements of the task. These predicted values are then
fed to the selector which selects the node with under utilized and
well suited for its requirement resource.

Predictor is used to predict the file I/O, CPU and memory
requirements of a task. For this we use prediction scheme described
in [7] uses a statistical pattern-recognition to predict the task
requirements. The prediction is made at the beginning of a process’s
life, given the identity of the program being executed.

The prediction scheme consists of two parts. In the first part, which
is an off-line procedure, resource usage states are determined for
program executions of a given UNIX system. Resource usage data is
collected for all processes that ran on the system for a few days, this
data is analyzed as follows: Each process is represented by a point in
a three-dimensional space, where each dimension corresponds to the
resources of the system, i.e., the CPU, the memory, and the file I/O.
A statistical clustering algorithm is then used to identify the high
density regions of this three-dimensional space (i.e., determine the
number of such regions and the means of their centroids). By
definition, most program executions occur in or near these regions,
and therefore they are referred to as the resource usage states.

In the second part, which is an on-line procedure, actual
prediction is made. The prediction scheme builds and maintains a
state-transition model for each program on an on-going basis. The
states of the model are the resource usage states defined above.
Suppose a program has been executed several times, providing a
sequence of execution instances. First, the sequence of execution
instances is converted into a sequence of resource usage states by
assigning the nearest resource usage state to each execution
instance. The state transition probabilities are then calculated from
this new sequence to build a state-transition model for the program.
The prediction is a weighted mean calculation of resource
requirements using the program’s current state-transition model and
the actual resource usage in its most recent execution. See [7] for
further details. Then predicted value is fed to the selector that is used
to select the best node among all nodes where the task will execute.
That node is under-loaded and gives response effectively.
Scheduler is responsible to dispatch the task to the node selected by
the selector. Then task will send to that node and task will execute
there. Load manager update the load status table.

IV. LOAD BALANCING ALGORITHM

We proposed a algorithm for a wide variety of workload
conditions including I/O-intensive, CPU-intensive and memory-
intensive load. The objective of the proposed algorithm is to balance
the load of three types of resources across all nodes in a cluster. In
this study analytically evaluate the performance of algorithm; we are
focused on a remote execution mechanism in which task can be
running on a remote node where it started execution. Thus
preemptive migrations of tasks are not supported in our algorithm.
To describe this algorithm first we introduce the following three
load indices with respect to I/O, CPU, memory resources. (1) CPU
load of a node is characterized by the length of CPU waiting queue,
denoted as LCPU(i). to identify whether node i’s CPU is overloaded.
(2) Memory load of a node is the sum of the memory space allocated
to all the task running on that node. The memory load of node i is
denoted as LMEM(i) (3)I/O load measures two types of I/O accesses,
i.e. (a) implicit I/O request includes by page fault; (b) explicit I/O
request issued from tasks. IO load index of node i is denoted as
LIO(i). TABLE I shows the definition of notation we used in this
paper.

Now we describe the load balancing algorithm of which the
pseudo code is shown in Fig.2. Given a set of independent tasks
submitted to the load manager. Our algorithm make an effort to
balance the load of the cluster resource’s by allocating each task to a
node such that the expected response time is minimized.

For each task t our algorithm repeatedly performs steps 2-19
described follows:

First it will predict all three IOREQj, CPUREQj, MEMREQj
requirements of task j from set of task by step 2. This three predicted

Job arrivals

Master
Node

μ1

μ2

μn

λ

190

value are important because according to this value task execute
with best suited node. Step 3 is used to find the highest requirements
of task and it is responsible for initiating the process of balancing
I/O resources. Step 4-7 are used to balance the I/O load. In step 4 If
the I/O requirements of task j are high then it will find the set of
node where I/O load is minimum and satisfy all three requirements.
Step 5 calculates the response time of task with all selected node.
Step 6 if the response time is minimum with particular node then
task will send to that specific node.

TABLE I
DEFINATION OF NOTATION

Notation Definition

N Number of node in heterogeneous
system

t Task submitted to the system

λ Arrival rate of task

μn Service rate of heterogeneous
system

IOREQ j I/O requirement of task j

CPUREQ j
CPU requirement of task j

MEMREQ j
MEMORY requirement of task j

IO
aL

I/O load on node(1≤a≤n)

CPU
aL

CPU load on node(1≤a≤n)

MEM
aL

MEMORY load on node(1≤a≤n)

k
IOL

I/O load index on set of k node
that satisfy all requirements

k
CPUL

CPU load index on set of k node

k
MEML

MEMORY load index on set of k
node

k
jR

Response time of task on set of k
nodes

 Second, step 8 if the memory requirements of task are high then

it will perform to step 9-12 to balance memory load among all
nodes. Page fault behaviors occur when the memory space allocated
by running tasks exceeds the amount of available memory. That’s
why it is necessary to balance memory to minimize the page fault.
Step 9 searches the set of node with minimum memory load and

satisfies all three resource requirement of task. Step 10 calculate the
response time of task with all selected node then step 11 find the
minimum response time of task from selected node then step 12
dispatch the to selected node.

Algorithm: Load balancing
Input: a job with task j submitted to master node
1. for each task do
2. Predict the value of IO,CPU and memory requirements
3. if),,max(MEMREQ jCPUREQ jIOREQ jIOREQ j=

4. choose set of k node such that node)(min
1

IO
a

n

a

k
IO LL

=
=

satisfy the all three requirements

5. calculate response time k
jR of task j in set of k node

6. if)(min
1

b
j

k

b

i
j RR

=
= then

7. dispatch the task to node Ni and execute there
8. else if),,max(MEMREQ jCPUREQ jIOREQ jMEMREQ j =

9. choose set of k node such that

node)(min
1

MEM
a

n

a

k
MEM LL

=
= satisfy the requirements

10. calculate response time k
jR of task j in set of k node

11. if)(min
1

b
j

k

b

i
j RR

=
= then

12. dispatch the task to node Ni and execute there
13. else if),,max(MEMREQ jCPUREQ jIOREQ jCPUREQ j =

14. choose set of k node such that

node)(min
1

CPU
a

n

a

k
CPU LL

=
= satisfy the requirements

15. calculate response time k
jR of task j in set of k node

16. if)(min
1

b
j

k

b

i
j RR

=
= then

17. dispatch the task to node Ni and execute there
18. update the load status;
19. end for

Fig. 2 .Pseudo code of the IO load balancing algorithm

Third, step 13 is responsible if the CPU requirements of task is

high and step 14 is search the set node with minimum CPU load
among all node that satisfy all requirements of task. And then
calculate the response time of task in each selected node. Step16
find node that gives minimum response time to execute the task.
Step 17 dispatches the task to the selected node. Last step 21
maintains updated load information that is send to the load manger

CONCLUSION

Even though there are number of different dynamic load
balancing techniques for cluster systems, their efficiency depends
topology of the communication network that connects nodes. This
research has developed an efficient load balancing for I/O, CPU,
MEMORY intensive for this we develop a new way to predict and
calculate the load of cluster nodes. The proposed load balancing

191

scheme aim to achieve the effective usage of global disk resources
in cluster. This can minimizes the average slow down of all parallel
jobs running on a cluster and reduce the average response time of
the jobs.

Future studies can be performed in following direction. First, we
will evaluate the performance of scheme on a large scale of cluster.
Second, we have assumed the task is independent, so we will also
simulate this scheme for inter-dependent task. Third, in this study
we have assumed network communication cost is negligible,
therefore we will extend this to balance load in network resource.

ACKNOWLEDGMENT

This research was supported by R&D project grant 2005-2008 of
MHRD Government of India with the title as “Fault Tolerant Real
Time Dynamic Scheduling Algorithm For Heterogeneous
Distributed System” and being carried out at department of
Computer Science and Engineering, NIT Rourkela.

REFERENCES
[1] Xiao Qin, Performance comparisons of load balancing

algorithms for IO-intensive workloads on clusters, Journal
of Network and computer applications(2006),
doi:10.1016/j.jnca.2006.07.001

[2] Xiao Qin ,Dynamic Load Balancing for IO-Intensive Tasks on
Heterogeneous Clusters, Proceeding of the 2003 International
Conference on High Performance Computing(HiPCO3)

[3] Xiao Qin ,Hong Jiang ,Yifeng Zhu ,David R. Swanson ,A
Dynamic Load Balancing Scheme for IO-Intensive
Applications in Distributed Systems, Proceeding of 2003
international conference on Parallel processing
Workshop(ICPP 2003 Workshop)

[4] Xiao Qin, A feedback control mechanism for balancing I/O-
intensive and memory-intensive applications on cluster, parallel
and distributed computing practices journal

[5] Paul Werstein ,Hailing Situ and Zhiyi Huang , Load balancing
in cluster computer, Proceeding of the seventh international
conference on Parallel and Distributed Computing,
Applications and Technology (PDCAT’06)

[6] Xiao Qin, H.Jiang, Y.Zhu and D.swanson, Toward load
balancing support for I/O intensive parallel jobs in a cluster of
workstation, Poc. Of the 5th IEEE international conference
cluster computing(cluster 2003) ,Hong Kong, Dec. 1-4-2003

[7] Kumar K. Goswami, Murthy Devarakonda and Ravishankar K.
Iyer, Prediction–baesd dynamic load-sharing heuristics, IEEE
transaction on parallel and distributed systems, VOL.4, No.6,
june 1993

[8] Xiao Qin, An availability-aware task scheduling strategy for
heterogeneous systems, IEEE transaction on computers

[9] Mohammed Javeed Zaki, Wei Li, Srinivasan Parthasarathy, A
Review of Customized Dynamic Load Balancing for a
Network of Workstations

[10] M. Kandaswamy, M.Kandemir, A.Choudhary, D.Benholdt,
Performance implication of architectural and software
techniques on I/O intensive application, Proc International
conference parallel processing 1998

[11] Neeraj Nehra, R.B.Patel, V.K. Bhat ,A Framework for
Distributed Dynamic Load Balancing in Heterogeneous
Cluster,Journal of computer science 3(1):14-24-2007

[12] Marc H. Willebeek-LeMair , Strategies for Dynamic Load
Balancing on highly parallel computer IEEE Transactions on
parallel and distributed systems Vol. 4,No. 9, September 1993.

[13] Bibhudatta Sahoo, S. Soma Sekhar, and Sanjay Kumar Jena,
"Dynamic Load Balancing In Heterogeneous Distributed
Systems Using Genetic Algorithm", Advances in Information
and Communication Technology, Macmillan India Ltd., 2007,
pp. 223-230.

192

