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Abstract: The present study deals with the dynamic stability of laminated composite pre-twisted 

cantilever panels. The effects of various parameters on the principal instability regions are 

studied using Bolotin’s approach and finite element method. The first order shear deformation 

theory is used to model the twisted curved panels, considering the effects of transverse shear 

deformation and rotary inertia. The results on the dynamic stability studies of the laminated 

composite pre-twisted panels suggest that the onset of instability occurs earlier and the width of 

dynamic instability regions increase with introduction of twist in the panel. The instability 

occurs later for square than rectangular twisted panels. The onset of instability occurs later for 

pre-twisted cylindrical panels than the flat panels due to addition of curvature. However, the 

spherical pre-twisted panels show small increase of non-dimensional excitation frequency.  
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1. INTRODUCTION 

The twisted cantilever panels have significant applications in wide chord turbine blades, 

compressor blades, fan blades, particularly in gas turbines. This range of practical applications 

demands a proper understanding of their vibration, static and dynamic stability characteristics. 

Due to its significance, a large number of references deal with the free vibration of twisted 

plates. The blades are subjected to axial periodic forces due to axial components of aerodynamic 

or hydrodynamic forces acting on the blades. Structural elements subjected to in-plane periodic 
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forces may lead to parametric resonance, due to certain combinations of the values of load 

parameters. The instability may occur below the critical load of the structure under compressive 

loads over wide ranges of excitation frequencies. Composite materials are being increasingly 

used in turbo-machinery blades because of their specific strength, stiffness and these can be 

tailored through the variation of fiber orientation and stacking sequence to obtain an efficient 

design. Thus the parametric resonance characteristics of laminated composite twisted cantilever 

panels are of great importance for understanding the systems under periodic loads.  

An excellent survey of the earlier works in the free vibration of turbo-machinery blades was 

carried out by Leissa [1] through 1981. The vast majority of earlier researches treated the blades 

as beams i.e. one-dimensional case. Such an idealization is highly inaccurate for the blade with 

moderate to low aspect ratio. Leissa, Lee and Wang [2] employed shallow shell theory and Ritz 

method to determine the frequencies of vibration of turbo-machinery blades with twist for 

different degrees of shallowness and thickness. However, there are very few studies on free 

vibration of composite pre-twisted plates. Qatu and Leissa [3] investigated the free vibration of 

laminated composite twisted cantilever plates using Ritz method. Although extensive free 

vibration frequencies and mode shapes are studied, the results were however confined to 

symmetric laminates only. He, Lim and Kitipornchai [4] presented the free vibration of 

symmetric as well as anti-symmetric laminates explaining the limit of linear twisting curvature. 

Karmakar and Sinha [5] analyzed the free vibration of laminated composite pre-twisted 

cantilever plates using finite element method. Hu et al.[6] studied the vibration  of angle-ply 

laminated plates with twist using a Raleigh-Ritz procedure. Kee and Kim [7] analysed the 

vibration characteristics of initially twisted rotating shell type composite blades. Lee et al.[8]  

studied the vibration of twisted cantilevered conical composite shells, using finite element 

method based on the Hellinger-Reissner principle. Hu et al. [9] have also investigated the 
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vibration of twisted laminated composite conical shells by the energy method. Since Bolotin 

[10] introduced the subject of dynamic stability under periodic loads, the topic has attracted 

much interest. This monograph explained the general theory of dynamic stability of elastic 

systems of deriving the coupled second order differential equation of the Mathiew-Hill type and 

the determination of the regions of instability by seeking periodic solution using Fourier series 

expansion. The parametric instability characteristics of laminated composite non-twisted plates 

were studied by a number of investigators [11-14]. Ganapathi et al. [15] investigated the 

dynamic stability of composite curved panels without twist subjected to uniform in-plane 

periodic loads. Sahu and Datta [16] studied the parametric excitation behaviour of doubly curved 

untwisted panels subjected to non-uniform in-plane harmonic loading. A few studies were made 

to investigate the dynamic stability of twisted blades. Ray and Kar [17] analyzed the dynamic 

stability of pre-twisted sandwich beams. Chen and Peng [18] studied the dynamic stability of 

twisted rotating blades, using the Galerkin finite element method. Lin and Chen [19] studied the 

stability problems of a pre-twisted blade with a constrained viscoelastic core subjected to a 

periodic axial load, using a 2-node element neglecting shear deformation and rotary inertia. The 

above studies involved dynamic stability of twisted structures using beam idealization. The 

study on stability characteristics of twisted panels is new. Crispino and Benson [20] investigated 

on the stability of thin, rectangular, orthotropic plates which were in a state of tension and twist 

using transfer matrix method. Recently, Sahu et al. [21] analyzed the buckling behaviour of 

twisted cantilever panels using finite element method. In the present investigation, the 

parametric instability characteristics of laminated composite pre-twisted cantilever flat and 

curved panels subjected to in-plane harmonic loads are studied. The effects of angles of pre-

twist, aspect ratio, static load factor, and the lamination parameters of the composite twisted 

curved panels on the principal instability regions are studied in this investigation. 
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2. MATHEMATICAL FORMULATIONS 

The basic configuration of the problem studied here is a cantilever panel of length ‘a’ and ‘b’, 

twisted through an angle φ, as shown in Fig.1 and subjected to in-plane periodic edge loading. 

 
 Z Y Y 
 Y '  φ 
            φ 
 
        b  
   
 
                 X Z 
 b 
  
 a Z '  

  
 

Fig. 1 Geometry and co-ordinate systems of twisted cantilever plates. 
 

Governing Equations: The governing differential equations for vibration of a shear deformable 

laminated composite twisted cantilever panel subjected to in-plane loads are [22, 23]: 
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Where Nx, Ny and Nxy are the in-plane stress resultants, Mx, My and Mxy are moment resultants 

and Qx, Qy= transverse shear stress resultants. Rx, Ry and Rxy identify the radii of curvatures in 

the x and y direction and radius of twist. 
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Where n= number of layers of laminated composite twisted curved panel, (ρ)k=mass density of 

kth layer from mid-plane. 

Dynamic stability studies: The equation of motion for vibration of a laminated composite 

twisted cantilever panel, subjected to in-plane loads can be expressed in the matrix form as: 

0}]]{)[(][[}]{[ =−+ qKtNKqM ge&&                                                                    (3) 

‘q’ is the vector of degrees of freedoms (u, v, w, θx, θy). The in-plane load ‘N(t)’ may be 

harmonic and can be expressed in the form: 

tCosNNtN ts Ω+=)(                                                                                         (4) 

Where sN  is the static portion of load N(t), tN  the amplitude of the dynamic portion of N(t) and  

Ω is the frequency of the excitation. The stress distribution in the panel may be periodic. 

Considering the static and dynamic component of load as a function of the critical load, 

crs NN α=  ,  crt NN β=                                                                                       (5) 

Where α and β are the static and dynamic load factors respectively. Using Eq.(5), the equation of 

motion for twisted curved panel under periodic loads in matrix form may be obtained as: 

0}]{][][][[}]{[ =Ω−−+ qtCosKNKNKqM gcrgcre βα&&                                      (6) 

The above Eq. (6) represents a system of differential equations with periodic coefficients of the 

Mathieu-Hill type. The development of regions of instability arises from Floquet’s theory which 

establishes the existence of periodic solutions of periods T and 2T. The boundaries of the 
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primary instability regions with period 2T, where T=2 π/Ω are of practical importance [10] and 

the solution can be achieved in the form of the trigonometric series: 

)]2/(}{)2/(}[{)(
,..5,3,1

tkCosbtkSinatq k
k

k Ω+Ω= ∑
∞

=

                                               (7) 

Putting this in Eq.(6) and if only first term of the series is considered, equating coefficients of 

Sin Ωt/2 and Cos Ωt/2 , the equation (6) reduces to  

0}]]{[
4

][
2
1][][[

2

=
Ω

−±− qMKPKPK gcrgcre βα                                                (8) 

Eq.(8) represents an eigenvalue problem for known values of α, β and crP . The two conditions 

under the plus and minus sign correspond to two boundaries of the dynamic instability region. 

The eigenvalues are Ω, which give the boundary frequencies of the instability regions for given 

values of  α and β. In this analysis, the computed static buckling load of the panel is considered 

as the reference load.  

Finite Element Formulation: A Finite element analysis was performed using an eight nodded 

curved isoparametric shell element with five degrees of freedom u, v, w, xθ  and yθ per node. 

The shell element is modified to accommodate laminated materials and twisting of the panel, 

based on first order shear deformation theory. u, v and w are the displacement components in the 

x, y, z directions and xθ  and yθ are the rotations.  

Strain Displacement Relations: Green-Lagrange’s strain displacement relations are presented 

in general throughout the analysis. The linear part of the strain is used to derive the elastic 

stiffness matrix and the non-linear part of the strain is used to derive the geometric stiffness 

matrix. The total strain is given by 

{ } { } { }nll ε+ε=ε                                       (9) 

The linear shear deformable Sanders’ strain displacement relations are [22]: 
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The non-linear strain components are as follows: 
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Constitutive Relations: The laminated composite pre-twisted cantilever panel is considered to 

be composed of composite material laminae (typically thin layers). The material of each lamina 

consists of parallel continuous fibers embedded in a matrix. Each layer is regarded as on a 
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microscopic scale as being homogenous and orthotropic. The stress resultants are related to the 

mid-plane strains and curvatures for the laminated shell element as : 
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The extensional, bending-stretching coupling and bending stiffnesses are expressed as  
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The transverse shear stiffness is expressed as: 
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Where κ is the transverse shear correction factor.  

The off-axis stiffness values are: 
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The stiffness corresponding to transverse deformations are: 

 

         (17) 

Where m=cos θ and n= sin θ; and θ=angle between the arbitrary principal axis with the material 

axis in a layer. The on-axis stiffness are: 
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Derivation of Element matrices: The element elastic stiffness and consistent mass matrices 

are derived using standard procedure as: 

Elastic stiffness matrix ηξddJBDBk T
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Where [B], [D], are the strain-displacement matrix, stress-strain matrix and J is the Jacobian 

determinant. [N] is the shape function matrix and is expressed as: 
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[P] involves mass density parameters as explained as: 
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Where P1, P2 and P3 are explained in Eq.(2). The geometric stiffness matrix is a function of in-

plane stress distribution in the element due to applied edge loading. Plane stress analysis is 

carried out using the finite element techniques to determine the stresses and these are used to 

formulate the geometric stiffness matrix [22]. 
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A computer program is developed to perform all the necessary computations. Reduced 

integration technique is adopted to avoid possible shear locking. The overall matrices [Kb], [Kg] 

and [M] are obtained by assembling the corresponding element matrices, using skyline 

technique. Subspace iteration method  is adopted throughout to solve eigenvalue problems.  

3. RESULTS AND DISCUSSIONS 

Numerical results are presented for anti-symmetric angle-ply laminated pre-twisted cantilever 

panels with different combinations of lamination parameters and geometry including angle of 

twist, b/h ratio, aspect ratio and curvature. The clamped (C) boundary condition of the angle-ply 

panel using the first order shear deformation theory is: 

C: u=v=w=θx=θy=0 at any edge. 

Convergence study: The convergence studies are made for non-dimensional fundamental 

frequencies of vibration of square laminated composite twisted cantilever plates for two 

thickness ratios (b/h=100, 20) and three angles of twists (φ= 00, 150 and 300) for different mesh 

divisions and are shown in Table 1. The maximum difference between the second (8 ×8 mesh) 

and third (10 ×10 mesh) results is less than 0.1%, which indicates the sufficient convergence. 

From the above convergence study, 10 ×10 mesh has been employed to idealise the panel in the 

subsequent analysis.   
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Table 1 Convergence of non-dimensional fundamental frequencies of vibration of 

               composite twisted cantilever plates with   ]45/45/45[ 000 −   lamination. 

    Non dimensional frequency, )/( 2
11

2 hEa ρω=ϖ  

3.0,1.7,96.8,138,1/ 12122211 ===== νGPaGGpaEGPaEba  

 Mesh Non-dimensional fundamental frequencies of free vibration 

for different thickness ratio and angles of twist 

  b/h=100 b/h=20 

φ=00 φ=150 φ=300 φ=00 φ=150 φ=300 

4×4 0.4615 0.5300 0.5165 0.4570 0.4744 0.4770 

8×8 0.4596 0.5261 0.5123 0.4546 0.4719 0.4745 

10×10 0.4592 0.5256 0.5118 0.4541 0.4714 0.4741 

 

Comparison with previous studies: The accuracy and efficiency of the present finite element 

formulation is validated for   free vibration analysis of composite twisted plates for different ply 

orientations with the results of  Qatu & Leissa [3] and He, Lim and Kitipornchai [4] using Ritz 

method. The results are presented in Table 2, showing good comparison with the literature. To 

validate the formulation further, the principal instability regions of untwisted (φ=00) anti-

symmetric angle-ply flat panel subjected to in-plane periodic loads is plotted with non-

dimensional frequency Ω/ω (ratio of excitation frequency to the free vibration frequency) 

without static component of load and compared with the results of Moorthy et al. [12]. As 

observed from Fig 2, the present finite element results show excellent agreement with the 

previous instability studies. 
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Table 2 Comparison of non-dimensional fundamental frequencies of vibration of    

   graphite epoxy twisted cantilever plates [θ, -θ, θ] plates, angle of twist φ=150 

 3.0,1.7,96.8,138,1/ 12122211 ===== νGPaGGpaEGPaEba  

 Non dimensional frequency, )/( 2
11

2 hEa ρω=ϖ  

 

 b/h 

Reference Non-dimensional fundamental frequencies of free vibration 

 for different ply orientations (θ) 

θ=00 θ=150 θ=300 θ=450 θ=600 θ=750 θ=900

100 A 1.0035 0.9296 0.7465 0.5286 0.3545 0.2723 0.2555 

 B 1.0034 0.92938 0.74573 0.52724 0.35344 0.27208 0.25544 

 C 1.00295 0.92798 0.74381 0.52560 0.35278 0.27200 0.25543 

20 A 1.0031 0.8981 0.6899 0.4790 0.3343 0.2695 0.2554 

 B 1.0031 0.89791 0.68926 0.47810 0.33374 0.26934 0.25540 

 C 0.99107 0.87025 0.67939 0.47143 0.33074 0.26786 0.25506 

 A=Qatu & Leissa [3], B=He, Lim and Kitipornchai [4] and C= Present work 
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Figure 2 Comparison of instability regions with number of layers of  untwisted (φ=0° ),  

 angle-ply panel (two layer: 45°/-450, four layer: 45°/-45°/45°/-450), a/b=1, α=0.0. 
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Numerical results: After validating the formulation, the parametric instability studies are 

carried out for uniaxially loaded laminated composite pre-twisted panels with static component 

of load to consider the effect of various parameters. The geometrical and material properties of 

the cantilever panel are: a=b=500 mm, h=2 mm (unless otherwise stated). 

313.0,96.2,95.5,23.9,0.141 122313122211 ====== νGpaGGpaGGGpaEGpaE  

The non-dimensional excitation frequency )/( 2
22

2 hEa ρΩ=Ω  is used throughout the 

dynamic instability studies, where Ω  is the excitation frequency in radian/second.  

The variations of instability regions with static load factor (α) for a twisted anti-symmetric 

angle-ply panel of square plan-form and twisting angle φ=15° is shown in Figure 3. As observed   

in Figure 3, the instability occurs earlier and the width of instability zones expands with increase 

in static load factor from 0.0 to 0.6. All further studies are done with static load factor α=0.2. 

The variations of instability regions with ply orientation of angle-ply [θ/-θ/θ/-θ] cantilevered 

pre-twisted (φ=30°) panels for uniform loading with static component is shown in Figure 4.  
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Figure 3 Variations of instability regions with static load factor of a twisted angle-ply panel 

   [30°/-30°/30°/-300], a/b=1, φ=15°, α=0.0, 0.2, 0.4 and α=0.6. 
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Figure 4 Variations of instability regions with ply orientation of a twisted angle-ply 
               panel [θ°/-θ°/θ°/-θ°], a/b=1,  φ=15°, α= 0.2, θ°=00 to 900. 
 

As observed, the onset of instability occurs earlier for ply orientations of 60°, 75° and 90°. The 

instability occurs much later for ply orientation of 0° and 15° . The ply orientation 0° seems to 

be the preferential ply orientation for this lamination sequence and twisting angle. Thus the ply 

orientations significantly affected the onset of instability region and the width of instability 

zones. The variation of instability regions shows asymmetric behaviour unlike the results of 

dynamic stability of simply supported, square and untwisted angle-ply plates by Chen and Yang 

[11]. This may be due to the un-symmetry in boundary conditions and twisting of the panels.  

The dynamic stability regions are plotted for angle-ply [30/-30/30/-30] twisted panel with 

different angle of twist i.e. φ=0°, φ=15°and φ=30°. As shown in Figure 5, the onset of instability 

occurs earlier with introduction of twist (φ=15°) in the untwisted panel (φ=0°). With increase of 

twist angle from φ=15° to φ=30°, the onset of instability occurs earlier with wider instability 

regions, for this lamination sequence and ply orientation. The dynamic instability regions have 

been plotted for cantilever angle-ply panel of aspect ratios a/b=1, 2 and 4. As shown in Fig.6, the 

excitation frequency decreases from square (a/b=1) to rectangular panels (a/b=2 and 4) with 

increase of aspect ratio. 
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Figure 5 Variations of instability regions with angle of twist of the twisted angle-ply flat 
  panel [30°/-30°/30°/-300], a/b=1, φ=0°, 15°and 30°, α= 0.2. 
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Figure 6 Variations of instability regions with aspect ratio of the twisted angle-ply panel  
 [30°/- 30°/30°/-300], a/b=1, 2 and 4, φ=15°, α= 0.2. 
 

The instability regions is also studied for pre-twisted 2, 4 and 8 layer anti-symmetric angle-ply  

panels. The onset of instability regions occurs later with more number of layers due to the 

bending stretching coupling. The effect of b/h ratio on the instability regions has been studied 

for uniform loading with static component. As observed in Fig.7, the onset of instability occurs 

with a higher excitation frequency for with increase of thickness of panels from b/h=300 to 

b/h=200. The width of instability regions is also wider for thinner panels than thicker panels.  
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Figure 7 Variations of instability regions with b/h ratio of the twisted angle-ply panel  
               [30°/-30°/30°/-300], a/b=1, b/h=200, 250, 300,  φ=15°, α= 0.2. 
 

The effect of degree of orthotropy is examined for the anti-symmetric angle-ply twisted panel 

for three cases (E1/E2=15, 25 and 25). As shown in Figure 8, the onset of instability occurs later 

with increase of degree of orthotropy. The width of instability zones decrease with increase of 

degree of orthotropy. The variation of instability regions is studied for anti-symmetric angle-ply 

pre-twisted cylindrical panels (b/Ry=0.25) to study the effect of angle of twist on the curved 

panel. As seen from Figure 9, there is significant deviation of the instability behaviour of twisted 

cylindrical panels than that of untwisted panels. 
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Figure 8 Variations of instability regions with degree of orthotropy (E1/E2) of the twisted angle- 

ply panel [30°/-30°/30°/-300], a/b=1, E1/E2=15, 25, 40,  φ=15°, α= 0.2. 
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Figure 9 Variations of instability regions of the twisted angle-ply cylindrical panel  
 [30°/-30°/30°/-300] with angle of twist (φ=00, 15° and 300), a/b=1, α= 0.2. 
 
The onset of instability of twisted cylindrical panels occurs much earlier than untwisted panels. 

The widths of instability regions increase with increase of angle of twist in the panel. Similar 

behaviour is also observed for the variation of instability region of twisted spherical and 

hyperbolic paraboloidal panels. The studies were then extended to compare the dynamic 

instability regions of different composite cantilever curved panels i.e cylindrical (b/Ry=0.25), 

spherical (b/Rx=0.25, b/Ry=0.25) and hyperbolic paraboloidal (b/Rx=-0.25, b/Ry=0.25) panels, 

for a particular twist (φ=15°), to study the effect of curvature. 
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Figure10 Variations of instability regions with curvature for different twisted curved panels of  
   angle-ply [ 0000 30/30/30/30 −− ] panels, a/b=1,  φ=15°, α= 0.2, b/Ry=0.25. 
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 As observed from Figure 10, the onset of instability regions occurs later for cylindrical panels 

than the flat panels due to addition of curvature. The width of instability regions is smaller for 

cylindrical panels than flat panels. However, the spherical pre-twisted panels show small 

increase of non-dimensional excitation frequency. The onset of instability of laminated 

composite pre twisted hyperbolic paraboloidal curved panels occurs earlier to pre twisted 

cylindrical panels but after flat panels. 

 
4. CONCLUSION 

The results on the stability studies of the laminated composite pre-twisted cantilever panels can 

be summarised as follows: 

• Due to static component of load, the onset of instability shift to lower frequencies with 

wide instability regions of the laminated composite pre-twisted cantilever panels. 

• The angles of lamination significantly affect the instability behaviour of uniaxially 

loaded angle-ply twisted cantilever panels. It shows asymmetrical behaviour due to non-

symmetric boundary condition and twisting of panels. 

• The onset of instability occurs earlier with introduction of twist (φ=15°) in the otherwise 

untwisted  flat panel (φ=0°). There is significant variation of dynamic instability regions 

if the angle of twist of the panel changes from φ=15° to a panel with φ=30° for this 

lamination sequence and ply orientation. 

• The onset of instability occurs earlier with introduction of twist in the composite panels. 

The effect of twist is more pronounced in curved panels than flat panels. 

• The onset of instability occurs later for pre-twisted square panels than rectangular panels 

with increase of aspect ratio. The width of dynamic instability region is smaller for 

square panels than rectangular ones. 
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• The laminated composite pre-twisted cantilever panels become more stiff with more 

number of layers. 

• The onset of instability occurs with a smaller non-dimensional frequency for thin             

twisted panels than thick panels. The widths of instability regions are much less for thick 

panels than corresponding thin panels. 

• The instability occurs later along with reduction in width of dynamic instability regions 

with increase of orthotropy. 

• The onset of instability regions occurs later for cylindrical panels than the flat panels due 

to addition of curvature. However, the spherical pre-twisted panels show small increase 

of non-dimensional excitation frequency. The onset of instability of hyperbolic parabolic 

curved panels occurs earlier to pre twisted cylindrical panels but after flat panels. 

From the above studies, it may be concluded that the instability behaviour of composite 

twisted cantilever panels is greatly influenced by the geometry, material, angle of twist and 

lamination parameters. So, this can be used to the advantage of tailoring during design of 

composite twisted cantilever panels. 
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Legends of Figures 
 

Figure 1 Geometry and co-ordinate systems of twisted cantilever plates. 
 
Figure 2 Comparison of instability regions with number of layers of  untwisted (φ=0° ),  

 angle-ply panel (two layer: 45°/-450, four layer: 45°/-45°/45°/-450), a/b=1, α=0.0. 

Figure 3 Variations of instability regions with static load factor of a twisted angle-ply panel 

   [30°/-30°/30°/-300], a/b=1, φ=15°, α=0.0, 0.2, 0.4 and α=0.6. 

Figure 4 Variations of instability regions with ply orientation of a twisted angle-ply 
               panel [θ°/-θ°/θ°/-θ°], a/b=1,  φ=15°, α= 0.2, θ°=00 to 900. 
 
Figure 5 Variations of instability regions with angle of twist of the twisted angle-ply flat 
  panel [30°/-30°/30°/-300], a/b=1, φ=0°, 15°and 30°, α= 0.2. 
 
Figure 6 Variations of instability regions with aspect ratio of the twisted angle-ply panel  
 [30°/- 30°/30°/-300], a/b=1, 2 and 4, φ=15°, α= 0.2. 
 
Figure 7 Variations of instability regions with b/h ratio of the twisted angle-ply panel  
               [30°/-30°/30°/-300], a/b=1, b/h=200, 250, 300,  φ=15°, α= 0.2. 
 
Figure 8 Variations of instability regions with degree of orthotropy (E1/E2) of the twisted angle- 

 ply panel [30°/-30°/30°/-300], a/b=1, E1/E2=15, 25, 40,  φ=15°, α= 0.2. 

Figure 9 Variations of instability regions of the twisted angle-ply cylindrical panel  
 [30°/-30°/30°/-300] with angle of twist (φ=00, 15° and 300), a/b=1, α= 0.2. 
 
Figure 10 Variations of instability regions with curvature for different twisted curved panels of  
   angle-ply [ 0000 30/30/30/30 −− ] panels, a/b=1,  φ=15°, α= 0.2, b/Ry=0.25. 
 
 
 

Legends of Tables 
 

Table 1 Convergence of non-dimensional fundamental frequencies of vibration of 

               composite twisted cantilever plates with   ]45/45/45[ 000 −   lamination. 

Table 2 Comparison of non-dimensional fundamental frequencies of vibration of   

     graphite epoxy twisted cantilever plates [θ, -θ, θ] plates. 

 


