
NATIONAL CONFERENCE ON METHODS AND MODELS IN COMPUTING (NCM2C-2007), School of Computer &
Systems Sciences, Jawaharlal Nehru University, New Delhi, December 13-14,2007

 1

A DNA computing approach to solve Task Assignment problem
in Real Time Distributed computing System

Aser Avinash Ekka

Department of Computer Science & Engineering
NIT Rourkela, ORISSA, INDIA

Bibhudatta Sahoo
Department of Computer Science & Engineering

NIT Rourkela, ORISSA, INDIA

Abstract

Early attention has focused on DNA because its properties are extremely attractive as a
basis for a computational system. In this paper, we have proposed a new framework for
assigning task in heterogeneous Real time distributed system(RTDS) including the cost
of path connecting the nodes. The proposed approach is based upon a DNA replication
technique using fixed length coding to select the computing node to which task to be
assigned in RTDS.

1. Introduction
DNA computing is being established as a viable alternative to solve various NP

complete problems. These alternative approaches to performing exhaustive search in
solution space are found to be more efficient for various intractable problems. The
computer and the DNA both use information embedded in simple coding, the binary
software code and the quadruple genomic code, respectively, to support system
operations. On top of the code, both systems display a modular, multi-layered
architecture, which, in the case of a computer, arises from human engineering efforts
through a combination of hardware implementation and software abstraction. A process
represents just sequentially ordered actions by the CPU and only virtual parallelism can
be implemented through CPU time-sharing. Whereas process management in a computer
may simply mean job scheduling, coordinating pathway bandwidth through the gene
expression machinery represents a major process management scheme in a DNA. In
summary, a DNA can be viewed as a super-parallel computer, which computes through
controlled hardware composition. A comparison between the architecture of a computer
and a cell, within which DNA resides, has been given in Figure 1.

Nowadays the research effort in the area of DNA computing concentrates on four
main problems: designing algorithms for some known combinatorial problems, designing
new basic operations of ”DNA computers”, developing new ways of encoding
information in DNA molecules and reduction of error in DNA based computations [1].
So, we are inspired to use DNA computing to solve the assignment and scheduling
problem in distributed system, which is a NP-Hard problem. In this paper a DNA based
algorithms has been proposed for solving the task assignment problem on real time
distributed system. To our best knowledge it is the first attempt to solve this problem by
molecular algorithms.

NATIONAL CONFERENCE ON METHODS AND MODELS IN COMPUTING (NCM2C-2007), School of Computer &
Systems Sciences, Jawaharlal Nehru University, New Delhi, December 13-14,2007

 2

Figure 1: A simplistic schematic comparison of the architecture of a computer and a

cell. Note that RNA acts as a messenger between DNA

Major area of evolutionary computing research focuses on a set of techniques inspired by
the biological sciences, because biological organisms often exhibit properties that would
be desirable in computer systems. DNA computing is one of the evolutionary
computation techniques that, uses iterative process based upon various techniques
inspired by biological mechanism of evolution. A DNA algorithm is based on the general
scheme of an evolutionary algorithm as outlined in Algorithm 1 in the pseudo-code
fashion [2].

Algorithm 1. The general scheme of an evolutionary algorithm in pseudo-code

BEGIN
INITIALISE population with random candidate solutions;
EVALUATE each candidate;
REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

1. SELECT parents;
2. RECOMBINE pairs of parents;
3. MUTATE the resulting offspring;
4. EVALUATE new candidates;
5. SELECT individuals for the next generation;

OD
END

The proposed algorithm uses this general scheme of an evolutionary algorithm to solve
Task Assignment problem in Real Time Distributed computing System

The rest of the paper is organized as follows. The next section discusses basics of
DNA computing. Section 3 describes Real time distributed computing system (HDCS)
structure and task assignment problem. DNA Computational Model for task assignment
is presented in Section 4. Section 5 includes the proposed algorithm for task assignment

NATIONAL CONFERENCE ON METHODS AND MODELS IN COMPUTING (NCM2C-2007), School of Computer &
Systems Sciences, Jawaharlal Nehru University, New Delhi, December 13-14,2007

 3

based upon the computational model as discussed in previous section. Finally,
conclusions and directions for future research are discussed in Section 5.

2. DNA Computing

DNA computing is to use DNA as the platform to compute by means of molecular
biology techniques for encoding information, generating potential solutions, and selecting
and identifying correct solutions [3]. DNA computing, also known as molecular
computing, is a new approach to massively parallel computation based on
groundbreaking work by Adleman.

DNA (deoxyribonucleic acid) is a double stranded sequence of four nucleotides;
the four nucleotides that compose a strand of DNA are as follows: adenine (A), guanine
(G), cytosine (C), and thiamine (T); they are often called bases. James Watson and
Francis Crick discovered the famous double helix chemical structure of DNA in 1953. It
consists of a particular bond of two linear sequences of bases. This bond follows a
property of complementarily: adenine bonds with thiamine (A-T) and vice versa (T-A),
cytosine bonds with guanine (CG) and vice versa (G-C). This is known as Watson-Crick
complementarily. Each DNA strand has two different ends that determine its polarity: the
3.’end, and the 5.’end. The double helix is an anti-parallel (two strands of opposite
polarity) bonding of two complementary strands.

DNA computers work by encoding the problem to be solved in the language of DNA:
the base-four values A, T, C and G. Using this base four number system, the solution to
any conceivable problem can be encoded along a DNA strand like in a Turing machine
tape. Every possible sequence can be chemically created in a test tube on trillions of
different DNA strands, and the correct sequences can be filtered out using genetic
engineering tools. There are four reasons for using molecular biology to solve
computational problems.

1. The information density of DNA is much greater than that of silicon: 1 bit can be

stored in approximately one cubic nanometer. Others storage media, such as
videotapes, can store 1 bit in 1,000,000,000,000 cubic nanometer.

2. Operations on DNA are massively parallel: a test tube of DNA can contain trillions
of strands. Each operation on a test tube of DNA is carried out on all strands in the
tube in parallel

3. DNA computing is an interdisciplinary field where: biologists, computer scientists,
physics, mathematicians, chemists, etc. find a lot of interesting problems which can
be applied to both theoretical and practical areas of DNA computing.

4. Error tolerance capability: the DNA exhibits much better error tolerance capability,
resulting in improved system robustness. Redundancy plays a major role. The DNA
have multiple mechanisms to process the same information. If one fails, there are
other ways to ensure that crucial cellular processes, such as programmed cell death,
are completed [4].

NP-complete problems have an exponential number of solutions, and while it is

easy to verify that an instance is a solution, it is hard to find a correct solution. To solve
this, a nature inspired technique is helpful that uses biology and chemistry to generate all
possible solutions and filter them quickly. This is possible through DNA coding of the

NATIONAL CONFERENCE ON METHODS AND MODELS IN COMPUTING (NCM2C-2007), School of Computer &
Systems Sciences, Jawaharlal Nehru University, New Delhi, December 13-14,2007

 4

problem as it is possible to store 260 bits of information in 1 mL of DNA. This massive
parallelism property of DNA can be used to generate and test the possible combinations,
that can be the optimal solutions for a NP-complete problem.

3. Real Time Distributed Computing System
A real time distributed computing system (DCS) utilizes a distributed suite of different
high-performance machines, interconnected with high-speed real time communication
network, to perform different computationally intensive applications that have diverse
computational requirements and dead line. Real time distributed computing provides the
capability for the utilization of remote computing resources and allows for increased
levels of flexibility, reliability, and modularity. Resource management sub systems of the
DCS are designated to schedule the execution of the tasks that arrive for the service to
meet the specific dead line. A RDCS environments are well suited to meet the
computational demands of large, diverse groups of real time tasks.

We have considered the DCS where, the real time tasks are assumed to be
independent, i.e., no communications between the tasks are needed. The individual users
of the systems are independently submitting their jobs to the central scheduler. The
central scheduler operates using a dynamic scheme, because the arrival times of the tasks
may be random and some machines in the suite may go off-line and new machines may
come on-line.

3.1 Real Time Distributed System Architecture
 The real time distributed system architecture is modeled by a graph G=(V, E) where
vertices are nodes, and edges are bi-directional point-to-point communication links [8,9].

A node Ni is made of one processor PEi, one local memory LMi, and at least one
communicator CCi. A processor PEi executes Tasks Ti sequentially, reads from and
writes data into its local memory MMi. A communicator CCi cooperates with another
communicator CCj in order to execute sequentially transfers of data stored in the memory
(send or receive) between processors through a link.

Figure 2. A Real Time Distributed Computing

Systems model

NATIONAL CONFERENCE ON METHODS AND MODELS IN COMPUTING (NCM2C-2007), School of Computer &
Systems Sciences, Jawaharlal Nehru University, New Delhi, December 13-14,2007

 5

Figure 2 gives an example of G, with four nodes Node 1, Node 2, Node 3 and Node 4,
and an interconnection network where each node is made of one processor PE, one local
memory LM, and a communicator CC. To each processor PE we associate a list of tasks
(Di, Ci=PEk), where Di is the deadline and Ci is the worst-case execution time (WCET)
of the task Ti on processor PEi. Since the target architecture is heterogeneous, the WCET
for a given processor can be distinct on each processor. Nodes have their own RTOS
[10].

3.2 Workload Model

A Directed Acyclic Graph DAG is used to model a real time tasks with dependent
subtasks. The basic task model ∏ is modeled by a set of N periodic tasks Ti:

}1|),,({ NiCDPT iiii ≤≤==Π (1)

where Pi is the period of the task. Each task is released after every Pi time units. For non-
periodic tasks, Pi is represented by the minimum (or average) separation time between
two consecutive releases. The difference in time between the arrivals of two consecutive
instances of a periodic task is always fixed and is referred to as period of that task.
Although the inter arrival times of instances of a periodic task are fixed, the inter release
time may not be. Di is the relative deadline, the period of time after the release time
within which the task has to finish. Tasks can have an arbitrary deadline. Ci is the worst-
case execution time of the task at each release Ci > Di, i.e. the maximum time span
between release of a task and end of the response of that release.

In real time systems it is often necessary to determine an upper bound of time in that the
program block is executed. Operations of Ti can be only a computation operation. The
task Ti is invoked repeatedly at each period from the sensors. Equation 1 gives an
example of Ti. We consider each Task Ti to consist of a set of subtasks, which execute
“serially”. For convenience, we denote the set of subtasks of task Ti as shown in
We are considering tasks as Ci > Di > Pi. As we consider on-line real time distribution
scheduling heuristics, the arrival, distribution, the execution of operations and
communications are time-triggered, each task arrives after a given period.

Figure 3. Task Graph for Ti with four subtasks

We consider each task Ti to consists of set of subtasks each having timing and precedence
constraint [11] as shown in Figure 3. The subtask in a precedence constraint task
cannot be executed until the subtasks preceded by it have completed their execution i.e.

and . We have considered different number of subtask for each task and the
dependency is different for each task at each invocation at each period.

ist4

ist2
ist3

NATIONAL CONFERENCE ON METHODS AND MODELS IN COMPUTING (NCM2C-2007), School of Computer &
Systems Sciences, Jawaharlal Nehru University, New Delhi, December 13-14,2007

 6

4. DNA Computational Model
HDCS environments are well suited to meet the computational demands of large,

diverse groups of tasks. The problem of optimally mapping (defined as matching and
scheduling) these tasks onto the machines of a distributed HC environment has been
shown, in general, to be NP-complete, hence DNA replication techniques can be used to
find a solution. This approach is based on Adleman’s finding to solve the TSP problem
using DNA solution technique in 1994 [5]. The technique uses the possible combinations
of valid routes among the cities by Marge and anneals the two-solution set. One of the
solutions is the cities DNA molecule and the other as edge DNA molecule.

We have use a DNA replication technique using fixed length coding to select the
computing node to which task is to be assigned in RTDS as shown in Figure 4. The
designated computing node executes the task generated with real time constraints. The
approach to this work starts by relating each task on the source computing node as
salesman [5] and that after the destination node is selected the task is transferred to that
site. Table 1 shows the city and cost fixed length code for five nodes and costs in RTDS
[6].

Figure 4: Schematic structure of RTDS

4.1 Encoding

The encoding scheme, which includes the communication cost between a given
pair of computing nodes i.e., source and destination is presented in [6,7]. Table 1 shows
the encoded values for the given RTDS as shown in Figure 4.

Node Sequence
1 A—G—T—C—G—G
2 G—T—G—G—A—C
3 C—A—G—T—A—A
4 T—A—T—G—G—G
5 A—A—G—G—C—C

Cost

3 A—T—G—A—T—A
5 G—G—A—T—A—A

NATIONAL CONFERENCE ON METHODS AND MODELS IN COMPUTING (NCM2C-2007), School of Computer &
Systems Sciences, Jawaharlal Nehru University, New Delhi, December 13-14,2007

 7

7 T—A—C—T—A—A
9 C—C—T—G—C—A
11 T—T—A—C—C—A

Table 1: Node and cost sequences for the five node RTDS

4.2 Operations

The basic operations associated with DNA algorithm are usually designed for
ele

nds

ntains at least one DNA strand,

4. e TU and word w over alphabet

s cting which satisfy some particular conditions. On the other hand there may be
different sets of such basic operations. The set of operations used in this problem are:

1. MERGE: given test tube TU1 and TU2, create a new tube T containing all stra
form TU1 and TU2.

2. AMPLIFY: given tube TU create copy of them.
3. DETECT: given tube TU return true if TU co

otherwise return false.

SEPARATE: given tub ∑DNA create two tubes

5.

+(TU;w) and -(TU;w), where +(TU;w) consists of all strand from TU containing
w as a substring and -(TU;w) consists of the remaining strands.
LENGTH-SEPARATE: given tube TU and positive integer n create tube (TU;<
n) containing all strands from TU which are of length n or less.

POSITION-SEPARATE: given tub TU and word w over alpha6. bet create

Each of the above operations is a result ical procedure

[1

4. Proposed Algorithm for Task Assignment
periodic in nature. In real time

tem

lgor hm: Task Assignment using DNA

Encode each computing node and the cost of

 ∑DNA

tube B(TU;w) containing all strands from TU which have w as prefix and tube
E(TU;w) containing all strands from TU which have w as suffix.

of some standard biochem
,3].

Tasks in real time systems can be either periodic or a
sys s the functions not just to be logically correct but also to be within deadline. Tasks
are said to be periodic when they arrive within a fixed interval of time. The periodic real
time tasks can be described by its period, deadline and the worst-case execution time. The
proposed task assignment/allocation scheme for RTDS is consists of following four basic
steps:

A it

1. Solution Space Generation Phase.
communication with 6 base strands and the edge between each node with
complementary base. Create copies of them.

NATIONAL CONFERENCE ON METHODS AND MODELS IN COMPUTING (NCM2C-2007), School of Computer &
Systems Sciences, Jawaharlal Nehru University, New Delhi, December 13-14,2007

 8

2. Select itineraries that start and end with the correct nodes. Select strands, which
have start node as the centralized scheduler and end nodes as the possible
connected destination node.

3. Select itineraries that contain the least cost of communication. Check the cost of
the DNA strand by decoding the code sequence of the cost between the source and
destination node.

4. Select itineraries that give feasible schedule. Remove the last six codes of the top
strand i.e. node N2. Check the feasibility of sending the task if assigned to it
depending on available resources such as available CPU time, deadline
constraint of the task which may or may not depend on the period of the task. If
the choice is feasible then the assignment is made else go for the next available
strand.

This proposed algorithm is used to design a fault tolerant real-time scheduling scheme

for hard real time task. This scheme results multiple feasible allocation schemes, with out
computational overhead in comparisons to other iterative evolutionary techniques. The
proposed scheme is outlined in Figure 5 (darkened block) as shown in Figure 5. Figure 6
depicts the proposed computation result for transferring tasks from node N1 to node N2.
5. Conclusion
The research in DNA computing is in a primary level. High information density of DNA
molecules and massive parallelism involved in the DNA reactions make DNA computing
a powerful tool. Tackling problems with DNA computing would be more appropriate
when the problems are computationally intractable in nature. The most challenging task
is concern with efficient representation of the problem using four nucleotides of DNA.
This is always a open problem for the researchers, to represent a problem so that, each
iteration yield results solutions for the said problem. Due to its high degree of parallelism
in DNA Computing, that can overcome the difficulties arise to solve intractable problem
on silicon computers. The proposed ideas and methods show promising results that DNA
computing approach can be well suited for solving such real-world application in the near
future.

NATIONAL CONFERENCE ON METHODS AND MODELS IN COMPUTING (NCM2C-2007), School of Computer &
Systems Sciences, Jawaharlal Nehru University, New Delhi, December 13-14,2007

 9

Figure 5: Developing a DNA based RTDS schedule

Figure 6: DNA Computation for N1 N2 including the cost.

NATIONAL CONFERENCE ON METHODS AND MODELS IN COMPUTING (NCM2C-2007), School of Computer &
Systems Sciences, Jawaharlal Nehru University, New Delhi, December 13-14,2007

 10

References:

[1] Piotr Formanowicz. DNA computing. Computational Methods in Science and

Technology, 11(1):11–20, 2005.

[2] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing, chapter What

is an Evolutionary Algorithm? Natural Computing Series. Springer ISBN 3-540-
40184-9, 2003.

[3] Yang ren Rau and Huey jenn Chiang. DNA computing on the minimum spanning

tree problem. International Symposium on Nanoelectronic Circuits and Giga-scale
Systems (ISNCGS 2004), pages 101–105, 2004

[4] Degeng Wang and Michael Gribskov. Examining the architecture of cellular

computing through a comparative study with a computer. Journal of The Royal
Society Interface, 2(3), June 2005.

[5] Leonard M. Adleman. Molecular computation of solutions to combinatorial

problems. Science, 266:1021–1024, November 1994.

[6] S.Y. Shin, B.T. Zhang, and S.S. Jun. Solving traveling salesman problems using

molecular programming. Proceedings of the Congress on Evolutionary
Computation, 2:994–1000, 1999.

[7] Ji Youn Lee, Soo-Yong Shin, Tai Hyun Park, and Byoung-Tak Zhang. Solving

traveling salesman problems with DNA molecules encoding numerical values.
BioSystems, 78:39–47, 2004.

[8] Xiao Qin; Hong Jiang and Swanson, D.R, "An efficient fault-tolerant scheduling

algorithm for real-time tasks with precedence constraints in heterogeneous
systems", Proceedings of International Conference on Parallel Processing,
Page(s):360-368, 18-21 Aug. 2002.

[9] Yongbing Zhang; Hakozaki, K.; Kameda, H.; Shimizu, K., "A performance

comparison of adaptive and static load balancing in heterogeneous distributed
systems", Proceedings of the 28th Annual Simulation Symposium, April 1995 pp.
332 – 340

[10] Rajib Mall, Real-Time Systems, Pearson Education’07.

[11] I. Gupta, G. Manimaran, and C. Siva Ram Murthy, "Primary-Backup based fault-

tolerant dynamic scheduling of object-based tasks in multiprocessor real-time
systems," Dependable Network Computing, Kluwer Academic Publishers,

	Abstract
	Introduction
	DNA Computing
	Real Time Distributed Computing System
	3.2 Workload Model
	4. DNA Computational Model
	Encoding
	Operations
	Proposed Algorithm for Task Assignment
	Conclusion

