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Classification of Power System Disturbances Using a
Fuzzy Expert System and a Fourier Linear Combiner

P. K. Dash, S. Mishra, M. M. A. Salama, and A. C. Liew

Abstract—This paper presents a hybrid scheme using a Fourier
Linear Combiner and a fuzzy expert system for the classification
of transient disturbance waveforms in a power system. The cap-
tured voltage or current waveforms are passed through a Fourier
Linear Combiner block to provide normalized peak amplitude and
phase at every sampling instant. The normalized peak amplitude
and computed slope of the waveforms are then passed on to a diag-
nostic module that computes the truth value of the signal combina-
tion and determines the class to which the waveform belongs. Sev-
eral numerical tests have been conducted using EMTP programs
to validate the disturbance waveform classification with the help of
the new hybrid approach which is much simpler than the recently
postulated ANN or wavelet based approaches.

I. INTRODUCTION

T HE PROLIFICATION power electronics devices that
cause harmonic voltages and currents and the wide-

spread use of harmonics-sensitive electronic equipments are
addressed by both users and suppliers of electric energy. As a
result numerous power quality assessment methodologies and
diagnostic equipments for the detection, measurements, and
analysis are becoming commonplace in the power industry.
Many of the power quality concerns are associated with the
operation and design of customer facilities, concerns associated
with wiring and grounding problems, switching transients,
load variations and harmonic distortions of voltage and current
waveforms, etc.

The power quality study involves an important step, i.e., mon-
itoring the actual voltage and current waveforms and classify
these waveforms and display them when certain thresholds are
exceeded. An useftd breakdown of disturbance waveforms in-
cludes voltage sags, impulses, swells, outages,etc. These wave-
forms exhibit certain distinguishing characteristics and can be
identified to belong to a certain waveform class. The classifica-
tion scheme has to be robust and accurate to handle the noisy
data collected from the transmission or distribution networks.
Artificial Neural Networks (ANN) have attracted a great deal of
attention because of their pattern recognition capabilities, and
their ability to handle noisy data: However, it’s ability to per-
form well is greatly influenced by the weight adaptation algo-
rithm and the amount of noise in the data.

Past research has considered the applications of ANN’s to
classification of waveforms for low and high impedance faults
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Fig. 1. Block diagram representation of waveform classifier.

[1], [2], magnetizing inrush [3], and power quality issues [4]. In
a recent paper [5], the authors have studied both multilayered
feed-forward and time-delay ANN architectures for power
system disturbance waveform classification with a success rate
varying from 72% to 93%. The neural network architectures
suffer from large number of training cycles and computational
burden. Though Wavelet transform[6] has been used as a pow-
erful technique for disturbance waveform classification with
great success recently, the computational burden is very high.
The present paper, therefore, presents a computationally simple
and fairly accurate approach using a Fourier linear combiner
and a fuzzy expert system. The Fourier linear combiner [7]
extracts the amplitude and phase of the fundamental signal
and the fuzzy expert system identifies the class to which the
disturbance waveform belongs. Several digital simulation
results are presented to validate the procedure outlined in the
paper for successful classification of power system disturbance
waveforms.

II. A PPLICATION OFARTIFICIAL INTELLIGENCE TECHNOLOGIES

This section describes the development of a hybrid expert
system designed to improve the knowledge of the power sys-
tems engineer in the pursuit of an accurate diagnosis of power
system operating problems such as voltage sag, voltage swell,
faults, harmonics, etc..

Having chosen the classes of disturbance waveforms, the next
step in developing a classifier is the selection and extraction of
desired features. Any successful classification scheme would
depend on its ability in the presence of significant noise and
harmonics to pick out these relevant features of a waveform.
The expert system chosen for this purpose consists of a Fourier
Linear Combiner and a fuzzy diagnostic module. Fig. 1 shows
how these module are connected. The raw data in an actual
system is to be captured by using a signal conditioner, a data
acquisition interface, an analog-to-digital (A/D) conversion kit
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Fig. 2. Membership function for (a) amplitude and (b) slope of the voltage
waveform.

installed in a PC. This data comprises voltage and current wave-
forms of a disturbed power system. A Fourier Linear Combiner
(Appendix) module is then used to estimate the amplitude, phase
and THD of the captured waveforms [7]. Unlike in reference[7],
a least mean p-power error criterion is used to produce a robust
and accurate estimate of the amplitude of the time varying power
system signal.

III. A PPLICATION OFFUZZY EXPERTSYSTEM TO WAVEFORM

CLASSIFICATION

The particular application of artificial intelligence (AI) used
in the diagnostic module is called an expert system. As the
power system data is highly uncertain and the power disturbance
monitoring is a pattern classification problem, the fuzzy expert
system approach is adopted for this problem.

For classifying the disturbance waveforms, 3 fuzzy sets
are chosen for the slope designated as SN(slope negative),
SZ(slope zero), SP(slope positive). In a similar way 5 fuzzy
sets are chosen for the amplitude A which are designated
as ALN(amplitude large negative), ASN(amplitude small
negative), AZ(amplitude zero), ASP(amplitude small positive)
and ALP(amplitude large positive). The membership grades for

Fig. 3. Membership function of THD.

both the amplitude and slope are obtained from the following
relationships (using a bell shaped function shown in Fig. 2(a)).

�(x) = 1

,�
1 +

x� a1
c

�b1
; for x < a1;

= 1; for a1 < x < a2

= 1

,�
x� a2

c

�b2
; for x > a2 (1)

As an example, for the amplitude set ALN, the values of the
constantsa1; a2; b1; b2 andc are 0, 0.1, 2, 3, and 0.3, respec-
tively. Similarly for the fuzzy set SN, the values ofa1; a2; b1; b2
andc are 0.25, 0.9, 4, 8, and 0.1, respectively. Fig. 2(b) shows
the membership functions of the above fuzzy sets.

The slopeS of a waveform is obtained from the relationship

S(k) = [A(k)� A(k � 1)]=�T (2)

�T = sampling interval

k = iteration count

A(k); A(k�1) = normalized peak amplitudes of the waveform
at the instantsk and(k � 1), respectively.

The rule base for the fuzzy decision support system is listed
below as:

Rule 1: IF A is ASP AND S is SP THEN the waveform is
Swell;

Rule 2: IF A is ALP AND S is SP THEN the waveform is
Surge;

Rule 3: IF A is ASN AND S is SN THEN the waveform is
Sag;

Rule 4: IF A is AZ AND S is SZ THEN the waveform is
Normal;

Rule 5: IF A is ALN AND S is SN THEN the waveform is
Surge;

Rule 6: IF A is ASP AND S is SZ TBEN the waveform is
Swell;

Rule 7: IF A is ALN AND S is SN THEN the waveform is
Surge;
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Fig. 4. Training results of the Classifier for differen waveform types.

Rule 8: IF A is ALP AND S is SZ THEN the waveform is
Sag;

Rule 9: IF A is ALN AND S is SZ THEN the waveform is
Outage;

Rule 10: IF A is ALN AND S is SP THEN the waveform is
Outage.

The fuzzy inferencing is done using the maximum product
compositional rule of inference. If�1; �2; . . . . . .�5 are the
firing strength of the rule base for each category of the transient
power system disturbance (Swell, Surge, Sag, Outage and
Normal), the output is obtained as

�0 = �1 OR �2 OR �3 OR �5 (3)

= max(�1; �2; �3; �4; �5)

An uncertainty index� is incorporated to the computation
process to yield the final value of the output from the fuzzy
decision block as

�of (k) = ��0(k) + (1� �) � �0(k � 1): (4)

This index � is used to take into account the time lag
between the measured value and actual value. The severity of
this problem arises when the magnitude of the voltage phasor
changes is accompanied by a change in the phase angle as is
observed in the case of transformer switching and starting of
induction motors. The value of� is chosen to lie between 0.7
and 0.9.

Although the power system disturbance waveform belongs to
five categories like the Sag, Swell, Surge, Outage and Normal,



DASH et al.: CLASSIFICATION OF POWER SYSTEM DISTURBANCES 475

Fig. 5. System configuration of the model used for testing.

the harmonic distortion can be present in each of them. The clas-
sification of a distorted waveform can be carried out by defining
a membership grade for the THD as

�(THD) = 1

,�
1 +

THD � 5

50

�0:2

(5)

where THD is expressed in percentage. From the figure, the rule
for assessing THD is obtained as:

If THD is <5% then the waveform is normal and if 5%<
THD < 50%, the waveform is distorted. At 50%, the member-
ship grade for THD is 1.The membership function for THD is
shown in Fig. 3.

IV. SIMULATION RESULTS

Computer simulated waveforms for various transient distur-
bances of a power system are generated using MATLAB. The
sampling rate of 16 based on a 50Hz waveform is used for
testing the effectiveness of the new algorithm in classifying dis-
turbance waveforms. A SGN function is used for updating the
weight vector of the neural estimator which is initialized using
a set of random weights.

The value of initial step size�i is chosen as 0.8 and the limit
�max and�min are kept between 1.2 and 0.6, respectively.

Fig. 4 shows the category of the simulated waveforms like
Sag or Swell and the corresponding output from the Fourier
Linear Combiner and the integrated neural fuzzy diagnostic
system. The training of the hybrid monitoring system for dif-
ferent class of waveforms is essential for tuning the parameters
of the various modules. From the figure it is observed that each
category of waveform is successfully classified as the output
from the hybrid model shows a truth value of the particular
class that suddenly rises from zero to 100% in most cases in
comparison to the normal waveform.

The example taken for study is a generator supplying a power
network which comprises short transmission line section and
resistive and constant impedance loads. The system configura-
tion is shown in Fig. 5. The resistive load (3.3 MW) is supplied
through a power converter (rectifier) and the initial current is
18 amps when the converter is started. Variable static capacitors
are installed at the load bus and the converter bus to improve
the load power factor and provide VAR support to the buses.
The power converter is started att = 0:043 s and an outage at
the generator end is initiated att = 0:49 s. The outage persists
for 0.04 s (2 cycles based on 50Hz; supply). The power network

Fig. 6. Converter bus voltage (Ph. A).

is simulated using EMTP software package and Fig. 6 presents
the instantaneous converter bus voltage waveform (one phase
only). The classification results are presented in Fig. 7. From the
figure it can be seen that the classification of the transient power
quality disturbance waveform is done very successfully. For the
particular type of disturbance, membership grade will become
unity and for other nonoccuring types, membership grades will
be very small.

The above results reveal that the proposed approach is com-
putationally simple in comparison to the ANN based approaches
[7] and yeilds classification in less than a cycle (.02 sec) based
on a 50 Hz fundamental waveform. However, if the signal is
highly distorted or there is frequency variation at the time of
disturbance, the time required for the calculation of peak am-
plitude and slope will be completed within 2 cycles (.04 secs).
Thus the total classification time for the computation and fuzzy
logic based classification will be slightly higher than 1 or 2 cy-
cles (.02 or .04 sec) depending on the level of distortion of the
power system signal.

The ANN based approach uses Discrete Fourier Transform
technique for peak or rms value extraction which produces large
error in the presence harmonics, decaying dc and noise. This
results in an incorrect classification of transient disturbances
in nearly 25% of the cases taken for study and larger classifi-
cation time. The wavelet transform, on the other hand, yields
more accurate results than the ANN approach, although it is
computationally intensive and requires nearly 3 cycles of the
fundamental waveform to yield a disturbance classification. An
on-line simulation study for voltage sag and harmonic distortion
has been carried out to confirm the simplicity and validity of the
approach.

V. CONCLUSIONS

The paper presents a new approach for the classification of
power system disturbance waveforms using a Fourier linear
combiner and a fuzzy expert system. A Fourier linear combiner
is used to estimate the normalized peak amplitude of the voltage
signal and its rate of change which become the inputs to the
fuzzy expert system for classification of the waveforms. The
fuzzy expert system yields a robust and accurate classification
scheme for a variety of simulated waveforms containing
harmonic distortions and noise. The approach is found to be
computationally much simpler than the ANN and Wavelet
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Fig. 7. Output of fuzzy expert module for the test waveform.

approaches which are currently used for transient disturbance
classification.

APPENDIX

FOURIER LINEAR COMBINER

The voltage or current signal of a power network is expressed
in the discrete form at thekth sampling instant as

y(k) = s(k) + (k) (A1)

where

s(k) =
NX

i=1

(ai cos i! k�T + bi sin i! k�T ) (A2)

where! is the frequency of the fundamental component of the
power system signal and is known apriori ;N is the order of the

highest harmonic in the signal and�T = sampling interval. In
the above formulationv(k) is the additive white Gaussian noise
with zero mean and variance�2v which has no correlation with
the signals(k). A decaying dc component can also be added to
the signal model given in (A2).

To obtain the Fourier coefficientsai and bi of the
signal, we propose the use of an adaptive estimator
in the form of a linear combiner shown in Fig. 8.
The input to the linear combiner is the vector
[cos k!�T; sin k!�T; � � � ; cos k!N�T; sin k!N�T ]T and
the weight vectorWi comprises the parametersai and bi,
which are the Fourier coefficients of the signal. A performance
index of the formJ(k) = E[j e(k)jp] is minimized to obtain
the parametersai and bi. HereE is the expectation of the
quantity ande(k) is the error between the desired signaly(k)
and estimated signal̂y(k); p is an index varying between 1
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Fig. 8. Fourier Linear Combiner.

and 5. Using the steepest descent algorithm, the weight vector
Wi is updated as

Wi(k + 1) = Wi + �ep�1(k)xi(k) (A1)

i = 1; 2; � � � � � � ;N for evenp ; and

Wi(k + 1) = Wi + � � sgn(e(k))ep�1(k)xi(k) (A2)

i = 1; 2 � � � � � � ; N for oddp; where

xi(k) = [cos i!k�T sin i!k�T ]T (A3)

Wi = [ai(k)bi(k)]
T � is the step size parameter and sgn(.) is

the sign function. Thus forp = 3, the parameterW is updated
as

Wi(k + 1) = Wi(k) + �e2(k)sgnfe(k)xi(k)g (A4)

For the value ofp greater than 5, the simulations exhibit perfor-
mance deterioration of the algorithm for tracking power system
sinusoids corrupted with noise. Also forp = 1, and 2, the per-
formance of the standard LMS algorithm is obtained. For op-
timum results, the step size� can also be varied. A suitable value

of � lies between 0.2 and 2. The peak amplitude and phase of
the fundamental component are obtained as

A =
q
a2
1
+ b2

1
; ��1(b1=a1):

The normalized peak amplitude is computed in per unit.
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