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A Radial Basis Function Neural Network Controller
for UPFC

P. K. Dash, S. Mishra, and G. Panda

Abstract—This paper presents the design of radial basis func-
tion neural network controllers (RBFNN) for UPFC to improve
the transient stability performance of a power system. The RBFNN
uses either single neuron or multi-neuron architecture and the pa-
rameters are dynamically adjusted using an error surface derived
from active or reactive power/voltage deviations at the UPFC in-
jection bus. The performance of the new single neuron controller
is evaluated using both single-machine infinite-bus and three-ma-
chine power systems subjected to various transient disturbances.
In the case of three-machine 8-bus power system, the performance
of the single neuron RBF controller is compared with BP (back-
propagation) algorithm based multi-layered ANN controller. Fur-
ther it is seen that by using a multi-input multi-neuron RBF con-
troller, instead of a single neuron one the critical clearing time and
damping performance are improved. The new RBFNN controller
for UPFC exhibits a superior damping performance in comparison
to the existing PI controllers. Its simple architecture reduces the
computational burden thereby making it attractive for real-time
implementation.

Index Terms—FACTS, indirect training, RBFNN, three-machine
power system, transient stability.

I. INTRODUCTION

W ITH increased power transfer, transient and dynamic sta-
bility is of increasing importance for secure operation of

power systems. FACTS devices with a suitable control strategy
have the potential to significantly improve the transient stability
margin. This allows increased utilization of existing network
closer to its thermal loading capacity, and thus avoiding the
need to construct new transmission lines. Amongst the available
FACTS devices, the UPFC (Unified Power Flow Controller) is
the most versatile one and can be used to enhance system sta-
bility. The UPFC is capable of both supplying and absorbing real
and reactive power and consists of two AC/DC converters. One
of the two converters is connected in series with the transmis-
sion line through a series transformer and the other in parallel
with the line through a shunt transformer. The DC side of the
two converters is connected through a common capacitor that
provides DC voltage for the converter operation.

The power balance between the series and shunt converters
is a prerequisite to maintain a constant voltage across the DC
capacitor. As the series branch of the UPFC injects a voltage of
variable magnitude and phase angle it can exchange real power
with the transmission line and thus improves the power flow
capability of the line as well as its transient stability limit. The
shunt converter exchanges a current of controllable magnitude
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and power factor angle with the power system. It is normally
controlled to balance the real power absorbed from or injected
to the power system by the series converter plus the losses by
regulating the DC bus voltage at a desired value.

Various control strategies to control the series voltage magni-
tude and angle and the shunt current magnitude have been pre-
sented in the references [1]–[4]. The series converter voltage
phasor can be decomposed into in-phase and quadrature compo-
nents with respect to the transmission line current. The in-phase
and the quadrature-voltage components are more readily related
to the reactive and real power flows in the transmission system.
During short-circuit and transient conditions, the decrease in
real power can be stopped by controlling the quadrature compo-
nent of the series converter voltage and hence the improvement
in transient stability. The series voltage in phase component is
either controlled by the reactive power flow deviation or voltage
deviation at the injected bus where the UPFC is located.

Use of ANNs (Artificial Neural Networks) for plant identifi-
cation and control is gaining interest [5], [6]. A potential advan-
tage of the ANN is its ability to handle the nonlinear mapping of
the input–output space. The output of the proposed ANN con-
troller is a neuron output, which may be either the quadrature or
the real voltage component of the series inverter of the UPFC.
The single neuron output will be either a function of the change
in real power or change in the bus voltage or reactive power. This
provides a nonlinear FACTS controller, which can significantly
improve the transient performance of the power system. A sim-
ilar neuron controller is used for the shunt current if both series
and shunt converter are controlled. It is well known that back-
propagation (BP) based ANN for power system control suffers
from local minima and overfitting problems and is difficult to
be implemented in real time due to a large number of neurons
in the hidden layer in comparison to the RBF control. To prove
the efficiency of the new RBF controller, the performance of the
3-machine power system is compared with both conventional PI
control and a BP algorithm based multi-layer ANN control.

II. SYSTEM MODEL

To study the new control strategy for the UPFC, a single-
machine infinite-bus system is considered for transient stability
simulations at the first instance. The power system and its de-
tailed circuit model are shown in Fig. 1. The synchronous gener-
ator is represented by a 3rd order machine model and the gener-
ator excitation system has a simple automatic voltage regulator
(AVR). The series converter injects a variable voltage source
and the shunt converter a variable current. The simplified –
representation of the differential and algebraic equations for the
generator, excitation systems are given in the Appendix.

0885–8950/00$10.00 © 2000 IEEE



1294 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 4, NOVEMBER 2000

Fig. 1. Single-machine infinite-bus power system.

Fig. 2. Phasor diagram for UPFC.

A. UPFC Equations

1) Series Converter:

(1)

2) Shunt Converter:The and -axes of the shunt converter
are chosen in such a way that-axis voltage coincide with the
terminal voltage , of the UPFC bus. Hence the axes represen-
tation of the shunt converter is as shown in Fig. 2.

Thus the direct and quadrature equations of the shunt con-
verter are

(2)

When expressed in terms of the– axes fixed to rotor of the
synchronous generator the voltage are

(3)

where

(4)

Similar equations hold good for the current and and the

shunt current is . Further in terms of dc capac-
itor voltage, and are expressed as

(5)

where is the shunt converter voltage and the
voltage ratio and firing angle of the voltage source inverter
are to be suitably controlled to provide improvement in damping
of the system oscillations.

The capacitor voltage dynamics is obtained as

(6)

where .
For the transient stability enhancement, the active voltage

component is controlled using either the reactive power de-
viation ( ) or voltage deviation ( ) at the bus no. 1. The

Fig. 3. Single-neuron RBFNN structure.

quadrature voltage component of the series converter is con-
trolled by the real power deviation AP at the bus-1. Instead of
using and directly, a more realistic control is obtained
using the in-phase and quadrature voltage components, and

with the line current .
In that case

(7)

where .
The shunt real current is calculated using a simple PI con-

troller as represented below.

(8)

where .

III. D ESIGN OFANN CONTROLLER FORUPFC

It is well known that a multi-layer feedforward neural net-
work with back-propagation (BP) training algorithm is the most
widely used NN model for nonlinear control of a power system.
However, the BP algorithm does not have a mechanism to detect
when the operating state of the power system falls in a region
with no training data. This produces a serious drawback of the
BP algorithm, as the operating condition covers a wide range of
system and fault conditions. Recently researchers have begun
to examine the use of radial basis function (RBF) network for
nonlinear control of plants and systems as they offer a simple
topological structure and give insight as to how learning pro-
ceeds in an explicit manner. Further for real-time implementa-
tion of a FACTS controller, a single neuron RBF neural network
(RBFNN) will be adequate.

Fig. 3 shows the structure of the RBFNN, where the hidden
layer comprises a single neuron referred to as the computing
unit. The hidden layer neuron in the network uses a Gaussian
basis function having two parameters called a centerand
spread associated with it. The response of one such unit to
the network input is expressed as

(9)

If more than one input and hidden unit is used (Fig. 4)

(10)

where denotes the Euclidean norm.
The output layer comprises a single neuron in this case and

the network output is obtained as

(11)
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Fig. 4. Multi-neuron RBFNN structure.

Fig. 5. RBFNN controller.

An extended Kalman filter (EKF) is used to adjust the network
parameters in the following manner:

error derived from the system variables

(12)

For example in a single input and single hidden neuron case

(13)

where
(Sampling Number),

predicted estimate,
one step ahead predicted covariance
filter gain
filter covariance

is the control variable
, if only one neuron is used for compu-

tation and for more than one hidden unit,
, becomes a unit matrix of appropriate

dimension.
In order to utilize a limited knowledge of the power system

dynamics to design the RBFNN controller for the series con-
verter (control of voltage outputs and ) a reinforcement
method of weight adaptation continuously in an on-line fashion
is used in this paper. Fig. 5, shows the shematic diagram of the
proposed controller for and respectively ( is the
shift operator).

The “ ” in Fig. 5 will be either real power or reactive power
depending upon the controller. In obtaining the control signal

, the input to the single neuron RBF controller is the real

power deviation signal and weight adjustment is done in
using the error surface as

(14)

In the above equation , is the real
power flowing into the transmission line at theth instant. The
derivative term

is (15)

The quadrature voltage component is used in (14) as it influ-
ences the real power error.

In a similar way, the weight adjustment for the single neuron
RBF controller to obtain the signal is done using the error
surface as

(16)

and

(17)

Instead of reactive power deviation, the voltage deviation at
bus-1 can be taken as a control input. Since an error surface
is used to update the parameters of the controller no network
training dataa priori is required for generating the control
voltage components and .

In case the PI regulator is used in controlling and , the
equations are:

(18)

IV. SIMULATION RESULTS

Both the single-machine infinite-bus and 3-machine 8-bus
power system shown in Figs. 1 and 10, respectively are taken
for digital simulation studies. The UPFC control scheme con-
sists of controlling voltage components and by using
real and reactive power deviations or real power and voltage de-
viations. The current of the shunt converter isobtained from the
power balance equations at every control instant. The following
large disturbance cases are considered for evaluating the perfor-
mance of these controllers. At the predisturbance condition the
value of , , of the RBFNN controller are initialized
to 0, 0, 0, or (depending on whether real power con-
troller or reactive power controller) respectively for the single
neuron RBFNN. Similarly for multi-neuron caseof all the
hidden neurons are initialized to either or and others
are kept 0. The “ ” parameters used to create the error surface
in case of RBFNN controller are optimized by minimizing a
performance index . The error “ ” will corre-
sponds to , or depending upon the controller. Also
the parameters of the PI regulator are optimized by the same per-
formance index as before. The controller parameters are given
in the Appendix.
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Fig. 6. Transient response atP = 0:4 p.u. andQ = 0:2 p.u..

Fig. 7. Transient response atP = 1:4 p.u. and atQ = 0:6 p.u..

A. Single-Machine Infinite-Bus Power System

Case 1: – Control (Only Series):The synchronous gen-
erator is assumed to operate at low power output condition (

p.u., and p.u.) and a 3 phase fault of 100 ms dura-
tion occurs near the infinite-bus.

Fig. 6 shows the transient response of the system with a con-
ventional PI regulator and single neuron RBF controller. From
the results it can be seen that significant first swing stability
is achieved by using the RBFNN controller in comparison to
the conventional PI controller. The d.c. voltage excursions are
also rapidly stabilized using the new controller and this is a very
important criterion for successful operation of series and shunt
voltage inverters.

The operating level of the generator is then changed to a high
power case with p.u., and p.u. and the same
fault is created. Fig. 7 shows transient response of the power
system for this operating condition with either PI or the RBF
neural controller. From the response, it can be ascertained that
the electromechanical oscillations are damped very quickly in
case of the new controller proving its superiority over the con-
ventional PI controllers used for UPFC control. The duration of
fault is then increased to 120 ms. The performance of PI and
RBFNN controller is presented in Fig. 8. It can be clearly seen
from the figure that the instability of PI controller is overcame
by RBFNN controller. Hence the new controller increases the
fault clearing time.

Case 2: – Control (Only Series):Instead of controlling
the active component of the voltage from the reactive
power deviation, the voltage deviation at the UPFC injection
bus is taken as the input signal to either the PI controller or the

Fig. 8. Transient response with 120 ms fault duration.

Fig. 9. Transient response atP = 1:4 p.u. andQ = 0:6 p.u..

Fig. 10. 500 kV three-machine power system.

RBFNN controller. The error surface used for this in phase
voltage control is

The generator loading is kept at p.u., p.u.
and Fig. 9 shows the transient response for a 3-phase fault at
the infinite-bus cleared in 0.1 sec. The significant improvement
in damping performance can be easily traced from the perfor-
mance curves given in the figure for the new controller.

B. Three-Machine 8-Bus Power System

The RBFNN controller is tested in the three-machine 8-bus
power system of Fig. 10. The UPFC (between bus-s and bus-r)
injection model is as shown in Fig. 11. The dynamics of the D.C.
link voltage neglecting losses can be represented by

(19)
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Fig. 11. UPFC: injection model.

Further the and are related to the series control voltages
in phase and quadrature with the line current

after the UPFC as

(20)

(21)

The data of the network is given in [7]. The UPFCs and
its controller data are given in the Appendix. Taking machine

as the reference and the pre-disturbance operating condi-
tion in p.u. as , ,

, the response of the network to dif-
ferent disturbances is presented, to establish the superiority
of RBFNN controller over the conventional PI controller and
multi-layer neural network (MLNN) with sigmoidal activation
function and back-propagation weight adjustment technique.
Real power MLNN controllers will consists of three inputs

, four hidden (including a
bias) and one output neuron. To make the output zero a constant
bias of is added to the output neuron. This is required
as the UPFC is used only for transient stability improvement
hence the control action is zero at pre-disturbance condition.
Similar to the real power MLNN controller a reactive power
MLNN controller is designed for UPFC. The initial weights are
assumed as zero. The learning rate and the momentum constant
used for updating the weights of the MLNN are optimized at
0.9 and 0.4, respectively. To have a meaningful comparison of
the damping property the RBFNN is simply replaced by MLNN
keeping the error surface same for both the neural network
controller. A modulating signal generated from the speed of the
machines is used to damp the power system oscillations. In that
case the signal is to be replaced by

(22)

for UPFC-1 and by

(23)

for UPFC-2.
The coefficients of the auxiliary signal used in (22) and (23)

are optimized at , , by
an integral error criterion as before. The following case studies
are undertaken for evaluating the performance of the proposed
controller in a three-machine environment.

Case 1: A three-phase fault of 100 ms duration is created
at the middle of the transmission line connecting

Fig. 12. Inter-area mode of oscillations.

Fig. 13. Local mode of oscillations.

Fig. 14. Inter-area mode of oscillations.

bus-2 and bus-4. The performance of the conven-
tional PI controller, MLNN controller and single
neuron RBFNN controller in damping the inter-area

and local mode of oscilla-
tions of the generators are presented in Figs. 12 and
13 respectively. In this case the– control of se-
ries voltage source is only taken. The performance
of single neuron RBFNN is quite promising in com-
parison to the PI as well as MLNN controller.

Case 2: The operating condition of the network is then
changed to ,

,
and the fault of case-1 is created to test the ro-
bustness of the single neuron RBFNN controller
to change in operating condition. Figs. 14 and 15
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Fig. 15. Local mode of oscillations.

Fig. 16. Inter-area mode of oscillations.

clearly depicts its robustness for operating condition
change.

Case 3: To test the robustness of the RBFNN controller to
fault location a three-phase fault of 100 ms duration
is created at the middle of one of the transmission
line connected between bus-6 and bus-1 with the
loading of generators same as case-1. The perfor-
mances of the controller for damping modal oscil-
lations are presented in Figs. 16 and 17. The superi-
ority of single neuron RBFNN is well marked.

Case 4: In order to test the effectiveness of a multi-layer
RBFNN the fault of case 1 with 125 ms duration is
simulated. The multi-neuron RBF is chosen to com-
prise three inputs and three hidden neurons. The per-
formance of single neuron RBF and multi-neuron
RBF with delayed values of either or as
input is presented in Figs. 18 and 19. The multi-
neuron RBF makes the unstable case stable, hence
the critical clearing time increases sacrificing the
simplicity in structure.

V. CONCLUSION

This paper presents single-neuron and multi-neuron Radial
Basis Function Controller (RBFNN) for the UPFC control in
single machine-infinite-bus and three-machine power systems.
The single neuron controller uses either the real and reactive

Fig. 17. Local mode of oscillations.

Fig. 18. Inter-area mode of oscillations.

Fig. 19. Local mode of oscillations.

power deviations or the real power and voltage deviations at
the UPFC injection bus to provide the magnitude and phase
angle of the variable voltage source for the series converter.
The shunt converter current can be similarly controlled using
a RBFNN and the UPFC with both series and shunt controls
provides the best transient stability performance of the power
system. The parameters of the single neuron RBF controller are
adjusted using an extended Kalman filter. More than one neuron
has also been used for providing control voltages, however, the
improvement in transient stability performance has been min-
imal in comparison to the single neuron case in most cases ex-
cept worst operating scenarios. The simple architecture of the
controller has the potential of implementation on a DSP chip in
real-time environment.
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APPENDIX I

A. The Generators Model

(differential operator)

and

B. Single-Machine Infinite-Bus Data in p.u.

1) Generator Data

2) UPFC Data

Kv MVA F

Limits of UPFC data in p.u.: .
3) Controllers Data

C. Three-Machine 8-Bus Data: UPFC and Controller Data

controller)

controller)
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