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Input-Output Linearizing and Decoupling Control of an  

Induction Motor Drive  
 

Dr K B Mohanty, Member
 

 

This paper presents an input-output linearizing and decoupling control scheme for speed control of 

an induction motor drive. In this scheme, the motor model is linearized, and torque and flux are 

decoupled by use of nonlinear control along with proportional-cum-integral controllers. The control 

scheme is implemented and tested in laboratory. 
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NOTATIONS 

G: the flux observer gain matrix 
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: the rotor current vector 
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notation (former), or in complex 

vector notation (later) 
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P   : number of pole pairs 

Rs, Rr   : stator and rotor resistance per 

phase respectively 

[ ]
qsds

T
qsdsdqs

vjv

v,v

−=

=v
 : the stator voltage vectors 

eω , rω :  angular electrical speed of the 

reference frame and speed of 

rotor, respectively 

[ ]
qrdr

T
qrdrdqr

j

,

ψ−ψ=

ψψ=Ψ
 : the rotor flux linkage vector 

[ ]
qsds

T
qsdsdqs

j

,

ψ−ψ=

ψψ=Ψ
 : the stator flux linkage vector 

dqrΨ̂  : the estimated rotor flux  

 

Dr K B Mohanty is with the Department of 

Electrical Enginerring, NIT Rourkela  769008.  

 
This paper was received on August 19, 2004. Written 

discussion on the paper will be entertained till 

November 30, 2007. 

 

 

 

 

INTRODUCTION 

One significant development in induction motor 

control over last three decades is the field oriented or 

vector control
1
. In vector control the torque and flux 

are decoupled by a suitable decoupling network. Then 

the flux component and the torque component (at 

quadrature to flux component) of the stator current, or 

in other words, the amplitude and phase angle of the 

stator current are controlled independently to control 

the induction motor (IM) as a separately excited DC 

motor. Though good dynamic current (or torque) and 

speed responses are obtained with conventional vector 

control, the torque is only asymptotically decoupled 

from the flux, i.e., decoupling is obtained only in 

steady state, when the flux amplitude is constant. 

Coupling is still present, when flux is weakened in 

order to operate the motor at higher speed within the 

input voltage saturation limits
1
, or when flux is 

adjusted in order to maximize power efficiency
2
. This 

has led to further research on application of 

differential geometry
3-4

 to develop the control 

techniques for linearization and decoupling control. A 

current command input-output linearization controller 

is reported
2
, where the IM drive is controlled for good 

dynamic performance and maximum power efficiency 

by linear decoupling of rotor flux and torque. On the 

basis of steady state errors, rotor resistance errors are 

computed and used in the output feedback control 

algorithm in order to reduce the errors. Differential 

geometry is also applied
5
, to linearize the induction 

motor in field oriented coordinates. The decoupling of 

torque and flux is achieved by a static state feedback 

controller. The decoupling of torque and flux, using 

the amplitude and frequency of the supply voltage as 

inputs, is also obtained by a static state feedback 

controller
6
 and by a dynamic state feedback 

controller
7
. Only the electromagnetic part is modeled, 

and mechanical dynamics is neglected in that study. 

Marino, et al
8
 have developed a voltage command 

input-output linearizing and decoupling controller for 

the induction motor drive. The linearizing controller is 

made adaptive to parameter variations. Linearizing 

control theory is applied to IM control
9
, after adding 

an integrator to one of the inputs. A globally stable 
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controller is presented
10

, for torque regulation of an 

induction motor with partial state feedback. Input-

output linearizing control theory is also applied to IM 

drive
11-12

. In this paper, a new approach for input-

output linearization and decoupling control of 

induction motor is discussed and a speed adaptive 

flux observer is designed. Simulation and 

experimental results are presented and discussed at 

the end. 

LINEARIZING AND DECOUPLING CONTROL 

A basic understanding of the decoupled flux and 

torque control resulting from field orientation or 

input-output linearization can be attained from the d-q 

axis model of an induction motor (IM) with the 

reference axis rotating at synchronous speed, eω . The 

voltage equations of the IM in this synchronously 

rotating reference frame
13

 are: 

dqsedqsdqssdqs R Ψω+Ψ+= J&iv  (1) 

dqrredqrdqrr )P(R Ψω−ω+Ψ+= J0 &i  (2) 

A state variable model of the induction motor with 

stator current and rotor flux vectors as state variables 

is obtained by simplification of equations (1-2) along 

with the flux-linkage equations
13

. The model is as 

follows: 

dqsdqrr32dqse1dqs c)Paa()a( vii +Ψω−+ω−−= JIJI&

  (3) 

dqrre4dqs5dqr })P(a{a Ψω−ω−−+=Ψ JIi&  (4) 
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2
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The field orientation concept implies that the current 

components supplied to the motor should be oriented 

in phase (flux component) and in quadrature (torque 

component) to the rotor flux vector dqrΨ . This can be 

accomplished by choosing the speed of the reference 

frame eω  to be the instantaneous speed of dqrΨ  and 

locking the phase of the reference system such that 

the rotor flux is entirely in the d-axis (flux axis). This 

results in the mathematical constraint: 

0=ψqr  and 0=ψqr
&   (5) 

To achieve equation (5) the constraint on the 

synchronous speed is as follows: (obtained from (4)) 

drqsre /iaP ψ+ω=ω 5   (6) 

When equation (5) is satisfied, the dynamic behavior 

of the induction motor is: 

dsqsedr2ds1ds vciaiai +ω+ψ+−=&   (7) 

qsdrr3qs1dseqs vcaPiaii +ψω−−ω−=&  (8) 

ds5dr4dr iaa +ψ−=ψ&   (9) 

The torque developed by the induction motor is: 

qsdrte iKT ψ=   (10) 

where 
r

m
t

L2

LP3
K =  is the torque constant. 

The field oriented induction motor model, described 

by equation (7) to equation (10), has nonlinearity. The 

speed emf term ( drr ψω ) appearing in (8) makes the 

current dynamics nonlinear and speed dependent. 

Equation (7) and equation (8) show that interaction 

between current components does exist, in the rotating 

reference frame. The transition from field oriented 

voltage components, dsv  and qsv  to current 

components as in equation (7) and equation (8) 

involves leakage time constants and interactions. 

During the flux transient period (equation (9)) 
coupling of flux and torque is obvious from equation 

(7) to equation (10). The interaction between current 

components, and nonlinearity in the overall system 

are eliminated by using input-output linearization and 

decoupling control
2, 5, 8, 12

. The present approach 

consists of change of coordinates and use of nonlinear 

inputs to linearize the system equations. Developed 

torque Te is considered as a state variable, replacing 

qsi  to describe the motor dynamics. Using equations 

(6), (8), (9), and (10), the torque dynamic equation is 

expressed as:  

[ ])ai(PvcKT)aa(T dr3dsrqsdrte41e ψ+ω−ψ++−=&  

  (11) 

The nonlinearities in equation (7) and equation (11) 

are put together and then replaced by nonlinear 

functions of the form u1 and u2 respectively. Equation 

(7) and equation (11) are then modified as follows. 

1uaiai dr2ds1ds +ψ+−=&   (12) 

2uT)aa(T e41e ++−=&   (13) 

With these linearizing inputs u1 and u2, the flux and 

torque are decoupled. Controllers are designed to 

obtain u1 and u2, which maintain decoupling and 

linearization under all conditions. The stator input 

voltage components dsv  and qsv  in terms of u1 and u2 

are: 

c

)ui(
v

qse
ds

1+ω−
=   (14) 










ψ
+ψ+ω=

drt
dr3dsrqs

K

u
)ai(P

c

1
v 2  (15) 

The block diagram of the induction motor drive with 

this input-output linearizing control scheme is shown 

in Figure 1. The design procedure for the P-I 
controllers is detailed elsewhere12. The gains as given 

there:  
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Kp3 = 151.24, Ki3 = 43640, Kp1 = 0.26, Ki1 = 1.98,  

Kp2 = 100, Ki2 = 29877. 

ROTOR FLUX ESTIMATION 

The input-output linearization and decoupling control 

algorithm given by equation (6), equation (14) and 

equation (15) requires the knowledge of rotor flux. 

However, it is difficult to measure the rotor flux of 

induction motor, practically. Therefore, the rotor flux 

is to be estimated from the measured values of speed, 

stator current and voltage. Gopinath’s reduced order 

observer14 is applied to estimate the rotor flux. The 

IM model described by equation (3) and equation (4) 

is written in the form: 

dqs1dqr12dqs11dqs vii BAA +Ψ+=&  (16) 

dqr22dqs21dqr Ψ+=Ψ AA i&   (17) 

where  JIA11 e1a ω−−= ; 

JIA r3212 aPa ω−= ; IA 521 a= ; 

JIA )P(a re422 ω−ω−−= ; and IB c1 =  

From equation (17), the flux observer equation with 

an error correction term
14

 is derived as follows: 

[ ])ˆ(

ˆˆ

dqs1dqr12dqs11dqs

dqr22dqs21dqr

vii

i

BAAG

AA

+Ψ+−+

Ψ+=Ψ

&

&

(18) 

Subtracting equation (18) from equation (17), the flux 

error dynamics for this observer is: 

dqr22dqr

~
)(

~
Ψ−=Ψ 12AGA

&
  (19) 

where dqrdqrdqr
ˆ~
Ψ−Ψ=Ψ  is the error in the flux 

estimate. 

It is verified that the matrix pair (A12, A22) is 

observable for all real rω . So, by choosing suitable 

gain matrix G, the eigen-values of the matrix 

( 1222 AGA − ) can be placed in the left half of s-

plane, so that the estimated flux dqrΨ̂  approaches the 

actual flux dqrΨ  asymptotically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

PIC :  Proportional-cum-Integral Controller 

Figure 1 Schematic diagram of the IM drive with Input-Output linearizing control scheme 
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It is desirable to eliminate the differential term of the 

current in equation (18). So a dummy variable defined 

by equation (20) is chosen. The algorithm for 

implementing observer equation (18) is as follows: 

dqsdqr
ˆˆ iξ G−Ψ=   (20) 

dqs1dqs1222

11211222

])(

[ˆ)(ˆ

vi

ξξ

BGGAGA

AGAAGA

−−

+−+−=
&

 (21) 

To place the eigen-values of the matrix 

( 1222 AGA − ) at ( yjx ±− ) rad/sec, the required 

observer gain matrix G is given by ( JI 21 gg + ), 

where 

2
3

2
2

324
1

)aP(a

aP)Py(a)ax(
g

r

rre

ω+

ωω−ω++−
=  (22) 

2
3

2
2

34
2

)aP(a

a)Py(aP)ax(
g

r

2rer

ω+

ω−ω+−ω−
=  (23)  

Selection of values for x and y is a compromise 

between sensitivity to measurement error and rapid 

recovery of initial error. A fast observer converges 

quickly, but it is also sensitive to measurement error. 

The rotor flux is estimated by solving for ξ̂  from 

equation (21), and then substituting in equation (20). 

EXPERIMENTAL RESULTS AND 

DISCUSSIONS 

The input-output linearization and decoupling 

controller and flux observer was implemented on an 

IGBT (Insulated Gate Bipolar Transistor) based PWM 

inverter fed induction motor drive with the help of a 

75 MHz Pentium processor based PC housed with 

moderately priced add-on cards, such as A/D card 

(PCL-208) and D/A card (PCL-726) from Dynalog 

Microsystems, India. The software controller was 

implemented in C language. Sampling time was fixed 

at 500 µsec by using 8254 timer of the PC. Once the 

timer has finished, the interrupt controller calls the 

channel interrupt, that is used for reading the A/D 

converter data each 500 µsec. The time required by 

the PC to execute the control loop once has been 

found to be 286 µsec approximately. For closed loop 

control, the motor is initially started on open loop in 

constant Volts/Hertz mode. After the motor achieves 

the steady state operation at a desired frequency, the 

control algorithm is switched on for closed loop 

operation. The rating and parameters of the 3-phase 

induction motor used in the experimental study are 

given in Table 1.  

Figure 2 shows the simulated and experimental 

responses for a step increase in speed reference from 

1000 r/min to 1480 r/min with linearizing control.  
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Figure 2 Simulation and experimental responses for step increase in reference speed from 1000 to 1480 r/min 

(reference flux linkage = 0.45 V.s): (i) Simulation response (a) Speed (b) Phase current;  (ii) Experimental response 

(c) Speed (d) Phase current 
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There are some differences in the transient responses, 

though the steady state values are equal. Settling time 

for current is approximately 260 ms from the 

experimental result, and 140 ms from the simulation 

one. Settling time for speed is approximately 300 ms 

from the experimental result, and 65 ms from the 

simulation one. The difference in the transient 

response is due to several factors, such as ceiling in 

the inverter voltages, inverter nonlinearity, 

measurement noise, magnetic saturation etc.  
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 (c) (d) 
Figure 3 Simulation and experimental responses for step decrease in reference speed from 1400 to 900 r/min 

(reference flux linkage = 0.45 V.s): (i) Simulation response (a) Speed (b) Phase current; (ii) Experimental response 

(c) Speed (d) Phase current 
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  (c)      (d) 
Figure 4 Simulation response for step change in load torque: (a) speed (b) d- and q-axis rotor flux linkages and 

developed torque (c) d- and q-axis stator currents (d) Stator phase current 
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 (c)  (d) 
Figure 5 Simulation response with flux observer when staring from standstill (a) Rotor speed (b) Actual rotor flux 

(c) Estimated rotor flux of observer (d) Flux estimation error 

 

Figure 3 shows the simulated and experimental 

responses for a step decrease in speed reference from 

1400 r/min to 900 r/min. Settling time for current is 

approximately 220 ms from the experimental result, 

and 100 ms from the simulation one. Settling time for 

speed is approximately 200 ms from the experimental 

result, and 60 ms from the simulation one. Figure 4 

shows the simulation response for a step change in 

load torque from 0 to 3 N⋅m. Developed torque 

response exhibits an overshoot of 0.2 N⋅m (6.67%). 

The d-axis rotor flux linkage remains constant at 0.45 

V⋅s and q-axis rotor flux linkage remains constant at 

zero. During the transient period of torque change, 

speed drops by 78 r/min (7.8%) and settles to 3% of 

reference value in 0.37 s. Decoupling of torque and 

flux, or in other words, torque and flux components of 

stator current is apparent from Figure 4. Figure 5 

shows performance of the flux observer. Speed, actual 

and estimated rotor flux, and flux estimation error 

from a simulation study, after the motor is started 

from standstill, are shown. 

Table 1  Rating and Parameters of the Induction Motor 

Three phase, 50 Hz, 0.75 kW, 220V, 3A, 1440 rpm 

Stator and rotor resistances: Rs = 6.37 Ω, Rr = 4.3 Ω 

Stator and rotor self inductances: Ls  = Lr  = 0.26 H 

Mutual inductance between stator and rotor: Lm  = 0.24 H 

Moment of Inertia of motor and load: J = 0.0088 Kg ·m
2
 

Viscous friction coefficient: β  = 0.003 N ·m ·s/rad 

 

CONCLUSIONS 

The concept of input-output linearization and 

decoupling control as applied to the induction motor 

drive is clearly presented. A speed adaptive reduced 

order observer for estimation of rotor flux has been 

developed. The designed controller and flux observer 

has been implemented in the laboratory, on an IGBT 

based PWM inverter fed IM drive with the help of a 

75 MHz Pentium processor based PC, and tested. The 

experimental results of the drive are compared with 

corresponding simulation results. Within the 

limitations of the experimental set-up, satisfactory 

agreement is found among them thus validating the 

control algorithm. 
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