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Efficient algorithms for the fast computation of 2-D and 3-D 
discrete Hartley transforms have been proposed. It is shown 
that the proposed algorithms offer a significant saving in 
computation over the existing methods for various array 
sizes. 

Introduction: Fast computation of the multidimensional dis- 
crete Hartley transform (DHT) is a subject of current interest 
[1-3] due to its application in image processing and spectral 
analysis. Bracewell et al. [l, 21 have proposed a computation 
of the multidimensional DHT by adding a certain number of 
temporary arrays; the temporary arrays are computed by a 
one-dimensional (I-D) fast Hartley transform algorithm. Also, 
Boussakta and Holt [3] have reported a fast multidimensional 
DHT algorithm using Fermat number transforms (FNTs). 

We propose relatively simple algorithms for 2-D as well as 
3-D DHTs which may further be extended to higher dimen- 
sions depending on the requirement. According to the pro- 
posed scheme the multidimensional DHT may be computed 
using any of the fast DFT algorithms and fast DHT algo- 
rithms in one dimension. We have calculated the operational 
requirement of the proposed algorithms using the Winogad 
DFT algorithm [4]/prime factor FFT of real-valued series [SI 
and corresponding Hartley transform algorithms. It is found 
that the proposed method offers significant computational 
saving over the others. 

Fast algorithm for 2-D D H T :  The 2-D DHT of an M x N 
array [x(m,  n)] may be defined as 

x [cos 2n($ + $) + sin 2n($ + $)] ( 1 )  

By splitting the arguments of sine and cosine functions of eqn. 
1 we obtain 

X ( k ,  r) = N i l u ( k ,  n)(cos 5 + sin 2) N 
" = O  

" = O  

where 

2nkm 
4 k ,  n) = 1 x(m, n) cos - 

M -  1 

m = 0  M 

and 

(3) 

Eqns. 3-6 indicate that a 2-D DHT of an array of size M x n 
may be computed in the following sequence: 

(i) the M-point DFT of each column of [x(m,  n)] is computed 

(ii) the real part of the DFT of the nth column is added to the 
negative imaginary part of the DFT of the (N - n)th column 
for 1 I n I N - 1; the real part of the DFT of the zeroth 
column, however, is added to the negative imaginary part of 
the DFT of the same column: the results should be stored in 
the corresponding positions of [x(m n)] under its new variable 

(iii) the n-point DHT of each row of [w(k, n)] is computed to 
obtain the desired 2-D DHT. 

Fast algorithm for  3-0 D H T :  The 3-D DHT of an array 
[x(l, m, n)] of size L x M x N may be defined as 

name [ N k ,  NI 

Splitting the arguments of the sine and the cosine functions of 
eqn. 7 by a procedure the same as that of the 2-D case, we 
have 

"=O 

where 

wz(i,j, n) = u2(i,jr n) + uz(i, j ,  N - n) 
M - I  2zjm 

wl(i, m, n) cos - 
m = 0  M M j .  n) = 

2njm 
uz(i, j ,  n) = 1 wl(i, m, n) sin - 

m = 0  M 

U-1 

wl(i, m, n)  = ul(i, m, n)  + ul(i, M - m, N - n) 

2zil 
ul(i, m, n)  = 1 x(1, m, n) cos - 

L- 1 

I=o L 

2nd 
ul(i, m, n) = 1 x(1, m, n)  sin - 

L - 1  

1=0 L 

by assuming 

ul(i, M, n) = ul(i, 0, n) 

ul(i, m, N) = ul(i, m, 0)  

u l ( i ,  M, N) = ul( i ,  0, 0) 

and 

It may be noted here that u(k, n) and v(k, n) represent the real 
part and negative imaginary part of an M-point DFT of the 
nth column of [x(m,  n)]. 

Substituting n = (N - n) into the second sum of eqn. 2, we 
obtain 

N-l [ 2: 2 n h ]  
"=O N 

X ( k ,  0 = c w(k, n) cos - + sin - 

where 

w(k, n )  = u(k, n) + D(k, N - n) and v(k, N )  = v(k, 0) (6) 

for0 I i I L - 1 , O I j  I M - 1 a n d 0 5  k I N - 1. 

procedure similar to that of a 2-D DHT. 

Computational complexity: To obtain the 2-D DHT of an 
array of size M x N, N M-point DFTs and M N-point DHTs 
have to be computed. Besides, to add the real parts with the 
appropriate negative imaginary parts of the DFT in the first 
stage of computation (M - l)N or (M - 2)N, additions will 
be required for M odd or even, respectively. For the 3-D DHT 
of an array of size L x M x N, M N  L-point DFTs followed 
by LN M-points DFTs and LM N-point DHTs have to be 
computed. The number of interstage additions for 3-D 

A 3-D DHT may be computed according to eqns. &15 by a 
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amounts to [(L - p)MN + (M - q ) L N ] ;  where, p = 1 if L is 
odd and p = 2 if L is even. Similarly, q = 1 if M is odd and 
n = 3 if M ip  even 
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Table 1 COMPARISON OF OPERATION COUNTS PER POINT FOR COMPUTATION O F  
MULTIDIMENSIONAL DHT BY DIFFERENT ALGORITHMS 

Proposed method Method of Bracewell et al. FNT method 
Array 
size Mult. Add. Total Mult. Add. Total Mult. SA* Total 

16 x 16 1.25 8.75 10.0 4.25 14.25 18.5 
17 x 17 1.11 17.7 18.81 

252 x 252 4.51 23.62 28.13 
256 x 256 12.02 30.02 42.04 
257 x 257 1.01 34.75 35.76 

16 x 16 x 16 1.87 13.37 15.25 6.38 20.38 26.76 
17 x 17 x 17 1.18 29.18 30.36 

16 x 16 x 252 3.50 21.06 24.56 
16 x 16 x 256 10.26 28.26 38.52 
17 x 17 x 257 1.18 36.82 38.00 

16 x 252 x 252 5.13 28.24 33.38 
16 x 256 x 256 14.14 36.14 50.28 
17 x 257 x 257 1.07 44.55 45.62 

252 x 252 x 252 6.76 35.43 42.19 
256 x 256 x 256 18.02 46.00 64.02 
257 x 257 x 257 1.01 51.95 52.96 

* SA denotes shift-adds operation per output point 
Mult: multiplications, Add: additions 

proposed algorithms offer significant saving of multiplications 
as well as additions over the method of Bracewell et al. for 
various array sizes. For every output point, the proposed 
method, on average, offers a saving of more than 12.5 addi- 
tions at the cost of nearly 2.4 extra multiplications over the 
FNT method. Furthermore, the time required to perform 
multiplications is greatly reduced with the improvement in 
hardware technology of present day computers, such that the 
computation time of a multiplication has become comparable 
to that of an addition. The proposed algorithm, therefore, will 
be more efficient compared with the FNT method as well. 

Conclusion: An efficient scheme for the computation of 2-D 
and 3-D DHTs is presented. It is shown that the proposed 
method offers significant computational saving over the other 
reported methods for various array sizes. The proposed algo- 
rithms, although using a DFT algorithm, do not involve 
complex arithmetic because the real and imaginary parts of 
the 1-D DFT of real-valued data are used separately instead 
of complete DFT components. 
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The recently available precursor hiphosphinoethane (BPE) 
was used, alongside with phosphine and with tertbutylphosp 
hine (TBP), to grow advanced multiquantum-well (MQW) 
laser wafers with five quaternary, compressive strained wells. 
The lowest threshold current densities and the lowest optical 
losses were obtained with BPE. In particular, the lowest 
threshold current density, 328A/cm2, is a record among 
published values for lasers with five wells. In this comparison, 
the wafer grown with phosphine came a close second and 
that grown with TBP was third. 

Introduction: Among several possible phosphorus 
organometallic compounds which could replace the hazard- 
ous phosphine in MOVPE, up to now, tertbutylphosphine 
(TBP) has received the most attention. We studied the use of 
TBP in growing laser devices [l]. Recently, the compound 
BPE, the synthesis and properties of which were already 
reported 31 years ago by Meier [2], was proposed as a com- 
mercial product. The advantage of BPE with respect to other 
proposed compounds is the high share of phosphorus in the 
molecular weight and the high phosphorus to carbon ratio 
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