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Langlands decompositions of affine Kac-Moody algebras have been obtained by the method of
direct determination as introduced by Cornwell for Lie algebras. This method is particularly
helpful in the case of lower rank algebras. The involutive automorphisms required for such a
study are obtained from the Satake diagrams of the corresponding algebras. This has been well
illustrated by takingAél) (untwisted) and4§f) (twisted) as representative examples.
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1. INTRODUCTION

Now it is beyond doubt that Kac-Moody algebras [1, 2] more particularly the affine versions have
wide physical applications in the context of integrable systems [3], two-dimensional field theories
and string theories [4] etc. The representation theory of such Kac-Moody algebras runs almost paral-
lel with that of Lie algebras. Already the highest weight representations of these algebras have been
discussed in great detail. Cornwell [5] has introduced the method of direct determination of Iwa-
sawa decomposition of Lie algebras, which plays main role in the construction of unitary irreducible
representations. We have already applied this technique to obtain Iwasawa decomposition of vari-
ous types of Kac-Moody algebras and superalgebras [6-8]. The method of direct determination can
also be extended very easily to give the Langlands decomposition [9] of all the parabolic subalge-
bras, which form an essential part in the construction of various unitary irreducible representations.
Keeping this in mind, in this communication we have obtained the Langlands decompositions of
affine Kac-Moody algebras takinggl) andAff) as illustrative examples. The involutive automor-
phisms [10] required for such studies have been obtained from their corresponding Satake diagrams
[11, 13]. The Satake diagrams are nothing but modified Dynkin diagrams which are used in the
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classification of the real forms of Lie algebras as well as the associated symmetric spaces [14]. In
recent times, these symmetric spaces have found application in the quantum integrable systems [3]
and random matrix models [12] that have been studied in various quantum transport problems.

The organization of the paper is as follows: In section I, we give an introduction to direct
determination of Langlands decomposition and briefly outlined the procedures for the construction
of Satake diagrams of Kac-Moody algebras. In Section-Ill, we have applied this method to find out
the Langlands decomposition diél) andAf) respectively. Section-IV contains few concluding
remarks.

[I(A). LANGLANDS DECOMPOSITION OFAFFINE KAC-MOODY ALGEBRAS

The notion of direct determination of Iwasawa decomposition [6, 8] of Lie algebra is extended to the
Langlands decomposition of parabolic subalgebrasglkéte a real Kac-Moody algebra generated
from its compact real forng, by an involutive automorphism defined with respect to the Cartan
subalgebrén of g, which is the complexification af 5.

The following commutation relations are satisfied by the elemergs of

[h,eq] = a(h) eq,h €h,a € R

N _ e if « 4+ (s aroot
areg] = 4 esfor B OHE
0, otherwise

[ea,€—a] = ha,ha € N. (2.1)

Here R denotes the set of roots of with respect toh and the Killing form is defined by
B(eq,e—o) = —1. Herea(h) = B(h,hy). The compact real forng,., which we get using
Cartan involution is given byh,, o = o, a, ... a, andi(eq + e_4), (ea — e—q) forall a € R.

Let K be the maximal compact subalgebragef defined in such a way thatc K iff a € gp
andoa = a whereo is an involutive automorphism af,. Let P be the subspace such that P
iff € gandoa = —a.

Thus,K andP are given by

K = {ihg,fora=a,a,...... a, and (eq + €_q),
i(eq — e_q) for all a| exp a(h) = +1}
P = {i(ea +e—qa),(eq —e_q) for all afexp a(h) = —1} (2.2)

Let ‘A’ be the maximal abelian subalgebraPfvith dimensionm and M be the centralizer of
Ain K. Thus,A may be taken to have a basis consisting of the elements of theifesm- e_,,).
Let R denote the set of positive roatsappear in this way il. Similarly, M may be taken to have
a basis consisting of the elements of the fden + e_,, ), with the set of positive roat appearing
this way inM, being denoted by, together possibly with some elementshafig. If A7 € hng
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is an element oM, thena(h”) = 0 for all @« € RA U Rpp- Complexification ofA © M together
with the derivation?’ gives a Cartan subalgebnaof g with basishy, h’, ... h! andd’.
Now there exists an inner automorphism [9} h’ — hi.e.

h, = Vh;,whereV:HVa,aeR,

™

8@ o)) /e 2:3)

Vo = explad{ian(eq —€e—q)}] and a, =

LetATbe the set of positive roots, thenh, = Z bj(a)h;. (2.4)
§=0

Thusa € At iff b;j(«a) > 0 wherej is the least index such thaf(«) # 0. The positive roots
can be again divided into the following classes:

(i) A = {alac AT, a(h) # a(VaV 1 h) forall h € b}, (2.5)

(i) AT = {alae AT, a(h) =a(VoV'h) forall h € h} (2.6)

Let the subalgebrbl be spanned by the elemeiifseq,a € A7 andN = NN g, whereN andN
are the nilpotent subalgebras@f andg respectively. Thus the lwasawa decompositiom gfis
given by

drp=K@A®DN, (2.7)

where® indicates the direct sum of vector spaces rather than a sum of mutually commuting Lie
subalgebras.
Now, a minimal parabolic subalgebra@f, is defined to be any subalgebra that is conjugate to

P,=M®A®N. (2.8)

A general parabolic subalgebra@f may be defined to be any subalgebraygfthat contains
a minimal parabolic subalgebra gf,. There exisR™ conjugacy classes of parabolic subalgebras
of g and in each such class there is a standard parabolic subaRglwhich can be obtained in
the following way:

Let X be the set of roota for A and¥ be the set of positive roots M wherey) = {\,, A, ...}.
Let # denote the subset df and< 6 > the set of roots irt which arises as a linear combination of
roots inf. Define< § >,=%>,.N < § >, whereX_, andX_ denote the positive and negative roots
in Y. LetN_(0), N_(6) andN(#) denote the subspace Afcorresponding tec § >, < § >_ and
Y1 — < 0 >4 respectively.

Now define

Ag = {h € A|A(h) =0 for all A € 0}. (2.9)
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Now for each\ € 6 constructQ, such that), € V A and is a linear combination of all the
elements,, € h for which the restriction ofv to VA is A.

Again, letA(0) be the orthogonal componentAf in A with respect to the Cartan Killing form,
then the Langlands decomposition of parabolic subalgebys, o

Po = My@As DNy (2.10)
where My = M@ NL(0) ©N_(0) @ A(6). (2.11)

A real Cartan subalgebtd. is said to ber invariant if
h. = (h. NK) @ (h. N P). (2.12)

A parabolic subalgebr&j is said to be cuspidal, if there exists annvariant real Cartan sub-
algebrah’. such that
Ag=h.AP. (2.13)

This shows that the minimal parabolic algebra is cuspidal.
[1(B). SATAKE DIAGRAMS OF AFFINE KAC-MOODY ALGEBRAS

Each Kac-Moody algebrg determinegy, (real form ofg) whereg is the complexification of
i.e. g = gp @ 9y (direct sum). Such a real form, determines a mapping : g — g,. The
mapping C has the following properties:

(i) [CX,CY]=C[X,Y]for X,Y €g.
(ii)  Cisan involution i.e. C? = I,.
(iii)  Cissemilinear, i.e.C(7X + pY) =7C(X)+pC(Y) for X, Y € gand p, 7 € C.
(2.14)

A bijection C' : g — g with the above properties is called conjugationgofConversely any
conjugation ofg determines uniquely a real algebg; = {X € g : CX = X} such that
g = gy + 9. Hence we have a canonical one to one correspondence between conjugation of
and real forms of). Let C' be the conjugation af defined byg, so thatC(X +iY) = (X —iY)
for X,Y € gp. C acts on the root system as follows:

For each rooty € R, we definer(a) such that

o(a(h)) = a(C(h)), h € h. (2.15)
Then we have,

C(9a) = 9_o(a)- (2.16)

The mappingy — —o(«) extends by linearity to an involutary isometry under whigh- R
is stable andR, is the set of rootsy € R, such thatr(o) = a. We havea + o(«)¢R for all
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a € R. Therefore, we are led to consider p&if3, o), whereR is a restricted root system aid
is an involutary isometry such thaf R) = R. Each Kac-Moody algebrg, therefore determines a
normal pair(R, o), which determineg ;.

The construction of Satake diagrams associated with real Kac-Moody algebras from the Dynkin
diagram of the corresponding complex Kac-Moody algebras proceeds as follows:

Let R be the root system of affine Kac-Moody algebra. koe R, leta = a — o(a), where
o is the involutive automorphism aR. Let us introduceR_ = {ala # 0,a € R}. Also let
Ry = {a € R|a = 0}. Further letB_ (resp.B) denote the basis dt_ (resp.R) and By be a basis
of Ry, thenBy = BN Ry is a basis ofRy. Let B_ = B/By = {«,} andB, = {3, } then

—o(0,) = ap) + > it By (2.17)

wherer is the involutive permutation df0, 1,2 . .. r} andn; are non-negative integers.
We can now associate with its Satake diagrams as follows:

In the Dynkin diagrams oB3, denote the roote; by white dot() as usual and the roof% by
black dotQ). If (i) = k, indicate this by) (. The Satake diagrams determine the involution
of R uniquely. We note that(5;) = 5, and ifa € Rthena + o(«) ¢ R.

In finite dimensional cases, the Satake diagrams of simple Lie algebras determines the real
forms of these algebras uniquely up to isomorphism and also determine the associated symmetric
space. In a similar manner we can also construct Satake diagrams from the Dynkin diagrams of alll
affine Kac-Moody algebras, which we hope, will provide one way of classification of real forms
of these algebras and will also determine the associated symmetric space (if it exists for an infinite
setting). Recently symmetric spaces have got wide application in quantum transport problems,
guantum integrable systems and random matrix models etc. Thus we hope these new types of
symmetric spaces may play important role in such type of studies in future. The same method
can also be applied to Lie superalgebra case. In an earlier paper Satake diagrams (super) has been
successfully used to determine the real forms of simple Lie superalgebras [16], which have one to
one correspondence with real forms determined by Parker [15]. The same method can be used in
the case of Kac-Moody superalgebra.

[lI(A). LANGLANDS DECOMPOSITION OFAgl)

2 -1 0 -1
-1 2 -1 0

0 -1 2 -1
-1 0 -1 2
anda,. The possible Satake diagramsﬁj) along with their root automorphisms are depicted in
Table I.

The Cartan matrix of islgl) . The four simple roots oﬂgl) area,, o, a,
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Table I: Satake diagram and Involutive automorphisnzzﬁﬁi> :

Dynkin diagram Satake diagrams Involutive automorphism

—o(ay) = ap» ~ (@) = &y,
A) AD -o(a,) =a,, —o(a,)=a,
2
f a, ~o(a,)=a,, ~o(a,)=a,,
(ii) C& —o(@,) =a,, —o(a,) =a,
a3

a a

al]
(iii) (A) ola,)=a,, —0(@)=a; +a;,
-o(a,)=a,, —oa;) =a, +a,

aR_a, /o
@, ola,)=a,, o(a,) =ay,
(@iv) o(a,) =a,, —cr(oz3)=013+0:0+oz]+at2
@, G(a0)=(10, O'(al)=a1,0'(a3)=a3,

v) —o(a,) =a, +a,+a, +a,

O"(al) =ai’a(a3)=a39
a
¢ —o(a,)=a, +ta, +a,,
i) -o(a,)=a,+a, +ay

Q,
(i) f ’: ¢ —o(a)) =a, +a,+a,, —o(@,) =a,,
o(a,) =a,, —o(a,) =a,
W

Let us consider the involutive automorphismmgl) determined by any one of the Satake dia-
grams, say (vi) of table I.
The simple root automorphisms are given by

J(al) = au_a(aQ) =y +a, +ay,

U(O‘:s) = Oy, _U(ao) =0, + o, +a;. (3.1)
In terms of rootsy and purely imaginary roaf, the basic root automorphisms can be written as

0'(041) = ()11,—0'(0(2) =0y +a, + oy,
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0(0‘3> = Gy, _0(5 — 0 — oy — 043) =0- Q,
(3.2)
where
a, =0 — (o, +a, + ).
So, the positive roots are given by

A 0, 0, ta; +nd, o, +nd, £a, +nd, a, + o, a, + oy, ) + o, + g, (3.3)
+(o, + a,) +nd, £(a, + o) +nd, (e, + a, + ) +nd,nd,n € Z+ '

We can apply simple root automorphisms to find out the automorphism of other roots and we
see that the positive roots can be separated into two categories i.e.

expa(h) = +1for
0 - oy, 0y, 00 + 1, fa, + 16, —a, +nd, 0 + ay, 0 + @y + oy, (3.4)
+(a, + a,) + nd,
expa(h) = —1for
0 - Qy, —0y + no, g, +n0, a, + oy, (e, + o) + nd, . (3.5)
+(a, + o, + ) +nd,nd
Thus forAél), K andP are given by
K = {ihg,fora=a,a,a,,a, and (eq +e_4),i(eq — e_y) for « given by eqn (3.4)}
(3.6)
P = {i(eqa+e—qa),(ea — e—q) for a given by eqn (3.5)}. (3.7)

We now select a maximal abelian subalgeb#awhich is two-dimensional and may be chosen
to have basis elements

h6 = 24{6042 T €—a, }a hll = i{eal +ay+ag+nd + e—(a1+a2+o¢3)+n(5}' (3.8)

So, we haveRp = {a,,a, + a, + a, + nd}, Ry, is empty.‘M’ is two-dimensional and its basis
elements are given by
—ihy = h(pinys, = thy = i(ha, — ha,) (3.9)
Note thathg, h’, hi, h} together with a scaling elemeditare the elements of Cartan subalgebra

h’. The inner automorphism oigl) is given by

V = J[Vaforalla € R\ URn, (3.10)

Vo= Va2 Val +a,+ag+mé
= exp{adli an,(€a, — €—q,)]} expladfiaa, +a,+a,+ms

(e, + a, +ay) +md — e,(a1+a2+a3)+m5)]} (3.11)
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™

where aq, 7 8(ay, )0/ (3.12)
a 7T
artagtagtmo [t78(cx, + v, + oy + mb, a, + aty + oy +md)(/2)
(3.13)
Heret” represents the complex variable.
Applying this to Cartan subalgebra bf, we get
hO = _ha2
hy = *(hozl + ha2 + ha3 + h(m+n)5)
hy = —h@nin)d
hs = —(ha, = ha,)- (3.14)

With respect to this Cartan subalgebra, the set of positive roots is given by

A+ — ay, =0y, 0y, +md, —a, £ md, o, £md, —(a, +a,), —(a, + o), —(a;, +a, + ay),
—(a, + o) + mé, —(a, + ;) + md, — (o, + a, + ;) + mé,mé,m € Z+

(3.15)
Now this can be divided into two categoriés’ andA ™, where
AT = {-md}, (3.16)
and
AT =AT/AT (3.17)
Now choose the fundamental root system,
U= {1, Ao} (3.18)
where
AM=0—(a, +a, +a,),q (3.19)

So that using equation (3.15), we write

ST = {1, A2, (—1£2m)A +(—=1£2m)Ag, (—242m) Ao £2mAq, (—14£2m) A +(—24+2m) Ao }.
(3.20)
It follows that\; is the restriction ofy,, o, to V' A, where as\, is the restriction ofy,, a.
Now sincedimA = m = 2, so there are four standard parabolic sub-algebras, namely the
minimal parabolic sub-algebrg,itself and two others which will now be determined:
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Case (I)— Choose
0= {\}. (3.21)

ThenV Ay has generatak, with
o=, +a, +a, +nd. (3.22)

So that4y has generatai(e, + e_,), where

o=, +a, +a, +nd. (3.23)
As @Qx, = hy, = ha,, SOA(0) has generatai(ea, + e—q,)- (3.24)
Now, as(f) = {\2}. So(f)_ = -, N (9) = {\2} andN_(9) is generated by the element
_ 1 ,
Vv 16% = §(€a2 — e_%) — z(e% — e_%). (3.25)

and as(f), = ¥, N (0) = {—\,}, SON_(0) is generated by the element

_ 1 .
V 16% = —§(€a2 —e—qa,) —i(ea, —€-q,) (3.26)

andN () is generated by elements

. 1 LY, i 1
Vv €a,t(m+n)s = :!:217 m e—(a2+oz3):t(n:|:(m+n)5)+217 w €a, £(m+n)s

/) 1 /) 1
+ < > B efozsimé - < > C ea1+a2i(m+n)67(3'27)

57 15 o 7 e
where
A = Sgn(Na1+a2+o¢3,—a2—a3)7
B = Sgn(Nal,aQ Na1+a2+a3,fa3)a

and C = Sgn(Na,a,)- (3.28)

1 1 1 1
-1 -
|4 €—a,t(m4n)s = :|:21/2 <1+t2n) D €—ay —a, H(nt(m+n))s + 21T (Hth> €a,+(m+n)s

1 l 1
+ <1 n t2n> Ee_ali(n:l:(m+n))5 - 217 <1—|—t2”> F €a2+a3i(m+n)5.
(3.29)

where

D = Sgn(Nal +a, oy, —a; —a, )7

&=
I

Sgn(Nal +aytag,o,+a, Na3,a2 )7
and F = Sgn(No,a,)- (3.30)
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1
-1
4 €—(a;+ay)£(m+n)s = < >e(a1+a2)i((m+n))6

T t2"> G €, +(nt(m+n))s

24+t
<1 + t2n> He—al:l:(m—‘rn)é

> Iea2+a3i(ni(m+n))6' (331)

1 +t2n
where
G = Sgn( aq o, tag,—(ay +o¢2))

H = Sgn(Naz,f(al+a2))7
and I = Sgn( ay,—(ay +a2)Na +a +a3,—a1)~ (3.32)

1
€—(a, +ag)E(m+n)d

<
L
)
o
[V
+
Q
w
iy
3
+
S
>
[\
-
V]
/\

1+ ¢2n Jeq 1 E(nE(m+n))d

( )
(1 + t2"> Ko mims
3 (rvm)

1+ t2n Le(a, +a, )+ (nk(m+n))s- (3.33)

where

J = Sgn( ay tay+ag,— (a2+a3))7
= Sgn<Na2,f(a2+a3))’
and L = Sgn(Na2,—(a2+a3)Na1+a2+a3,fa3)- (3.34)

1 o
14 €—(o +aytaz)E(m+n)s = _i(h(al—i—az—&—ag):tm&))

_5(6(a1+a2+a3)ﬂ:(m+n)6 — C(a; ta,tay)E(m+n)d ) (3.35)

Consequently the basis elements\aof) are given by
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1 1
9l/2 \ 1+ ¢2n A (67(a2+a3)i(ni(m+n)§ - e(a2+a3)i(ni(m+n)6)

+
] 1
o \ T2 ) (Castmin)s — €a, mn)s)
) 1
j:21/2 1 4 ¢2n B(efagimé - ea3im6)
1 1
o2 \1 + t2n C(ea1+azi(m+”)5 - e*alfaQ:I:(ern)é%
1 1
:F21/2 1+ $2n D (e—al —ay£(nk(m+n))d — €a1 +a2:t(n:t(m+n))6)
1 1
+21/2 1+ t2n (€ay(m+n)s — €—ayx(mtn)s)

1
+ < ) E (e—alzt(n:t(m+n))5 - 6cvl:I:(n:l:(m-{—n))é)

l 1
_21/2 1+ ¢2n F(ea2+a3:|:(m+n)6 - e—a2—a3:t(m+n)6)7

\/

( 7(a +ay)E(m4n)d — e(a +a, ) E(mA4n)d )

1+ t2n> G €a 3 E(nE(m+n))s — e—a3:|:(n:|:(m+n)6))

+
@+WJH“ﬂWW_%ﬁmmw

1 —I—t2n) I ea2+a3:|:(n:|:(m+n)) —a2—oz3:|:(n:i:(m+n))6)a

(

> (6 (ay+ag)E(m+n)s — €(a, +ag)E(m+n)d )

g t2"> J(€q, +(nt(m+n))s — €—a, £(nk(m+n))s)

14+t
(1 + t2n> K _a3i(m+n)6 - eoc3:|:(m+n)5)

T t2"> L(e(a,+a,)E(mt(m+n))s — €—(ay+a, )E(nE(m+n))s)>

11
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i 1
_i(h(al+oz2+a3)im6) - §<e(al+o¢2+a3)i(m+n)5 - ef(a1+a2+o¢3)i(m+n)5)' (336)

and the basis elements gy may be taken to be
1

~(€a, —€—qa,) —i(€a, — €-a,),

2

1 ) . .
_5(6042 - 6—042) - Z(e% - 6—012)’ Z(e% + 6—042)7 l(hal - hag)- (3.37)

Clearlyih,,,, i(e(a1+a2+a3)+n5 — 67(a1+a2+a3)+n5)7 i(ha, — ha,) are the generators of a real
Z-invariant Cartan subalgebha for whichh!. NP = A4. So the parabolic subalgebra is cuspidal
andPy = My @ Ay ® Ny.

Case (II)— Here, choose

0 ={\} (3.38)
In this case) Ay has generator
(hon + ha1+a2+a3+n§)- (339)
So that4y has generator
i(eaz + 6—(12) + i(eal +agy+az+nd — e—(a1+a2+o¢3)+n5)' (340)

As ), is a linear combination af, anda, + «, + a, + nd, SOA() has generator

U(eal—l—a2+a3+n5 - e—(a1+a2+a3)+n6) - i(6a2 + e*ag )J (341)

Moreover as{f)_ = {\,}, so elements dfl_(6) is generated by

_ 1 ) 7 1
|4 leal = 56011 - iAle—az—a:,‘—n(S - §Blea1+a2 - 5018—043—715 (342)
where
A = Sgn(Na1+a2+a3,f(a2+a3))7
Bl = Sgn(Nal,Ozg)a
and Cl = Sg’I’L(Nal,QQ N_a37(al+a2+a3)). (343)

and as(f), = {—A1}, so elements i, (0) is generated by

_ 1 1 ] 1
V lefal = 5670‘1 - §A2ea2+a3+n6 - §B2efalfa2 - 5026043-&-716 (3.44)

where

A2 = Sgn<Na1+a2+a3,—a1)7
BQ = SgTL(N_aP_al_QQ),
and Cy = Sgn(N-a, -a, No, +ay+as, —ay—ay)- (3.45)
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and elements dfl(¢) are given by

_ 1
Vv 1€—a2:t(m+n)5 = —§(€—a2i(m+n)5

_eazi(ern)&) - Z.(eozgi(?n«#n)é - efazi(m+n)6) and V_lefo%i(m«#n)éa

V_le—(a1+a2):|:(m+n)6’ V_le—(a2+a3):t(m+n)6 and V_le—(a1+a2+a3):|:(m+n)6a
all of which are mentioned in Case I. (3.46)
The elements oN(f) can be known by considering the elemeNts) g and basis elements of
Mg may be chosen in a similar way as mentioned in case-I.
As there does not exist two mutually commuting linearly independent generatdgsirk, so
this parabolic subalgebra is not cuspidal &yd= My ® Ag © Ny. (3.47)

I11(B). L ANGLANDS DECOMPOSITION OFAff)

2 -2 0

The Cartan matrix ofélf) is| -1 2 —2 |[. The three simple roots are), o, anda,. The
0o -1 2

possible Satake diagramsAﬁ2) along with their root automorphism are given in table II.

Table II: Satake diagram and Involutive automorphisrmgf).

Dynkin diagram Satake diagrams Involutive automorphism
83’:210? () O==0==0 ~o(ay) = ag,
0 1 2 a, o a, (@) =a,,
-o(e,)=a,
(i) [ xen xeu@) o(@,) =ag,

o(e,)=a,,

~-o(a,) = a, +4a, +4a,.

Let us consider the involutive automorphismA)f) determined by any one of the Satake dia-
grams, say (ii) of table Il. The simple root automorphisms are given by

—o(a,) = «,+4a, +4a,
ola,) = «

U(ao) = Q. 4.1



14 B. DAS AND K. C. PATI

In terms of rootsy and purely imaginary roaf the basic root automorphisms can be written as

—0’(042) = a,+ 4O‘l + 40‘07 U(al) = Qy,

- (1(5 90, — a2)> = (620, —ay),

where )
a, = 5((5 — 204 — ). (4.2)

So, the positive roots oﬁf) are given by

A = Ha,,a,,0, + a,, 20, + a,, o, +nd, ta, + 2nd, (20, + ) + 2n4,
1
+(o, + ay,) +né, i(i% + (2n — 1)0),

%(1(2% +ay)+ (2n — 1)8),n6,n € Z}. (4.3)

We can apply the simple root automorphism to find out automorphism of other roots and we see
that the positive roots can be separated into two categories, i.e.

exp a(h) = +1lfora={a,,—a, +nd,—a, + 2nd, — (20, + a,) + 2n0,
1 1
—(a, + ay,) + nd, 5(—% + (2n — 1)9), 5(—(20[1 +a,)+ (2n—1)0)}, (4.4)
exp a(h) = —1fora={a,, o, +a,,2a, +a,,a, +nd,a, +2nd, (2a, + ) + 2n6,

1 1
(al + a2) + n5, 5(052 + (2n - 1)5)7 5((2051 + a2) + (2n - 1)5)7 n(S} (45)
Thus forAff), K andP are given by
K = {ihq for a = a,,a,, a,, (eq + €_qa),i(€q—e_, ), for a given by eq(4.4)}, (4.6)

and P = {i(eq + e_q), (ea — €—q), for a given by eq(4.5)}. 4.7)

We now select a maximal abelian subalgelfrayhich is two-dimensional and may be chosen
to have basis elements,

hy = i(ea, +€-a,) (4.8)
hi = ile@a, ta,) T € (20, ta,)]- (4.9)

So, we havelp = {a,,2a, + a,} and Ry, is empty andM is one-dimensional and its basis
element is given by
—ihy = né. (4.10)

Note thathy, h’, h}, together with the scaling elemedftforms the Cartan subalgebna
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The required inner automorphism Aff) is

V. = Va, Vaa, ta, (4.11)
where Vo, = expladj{iaa,(€a, — €-a,)}]
exp[adj{ia2a1+a2 (€2a1+a2 — e,gal,az)}] (4.12)
T T
d o = 020, 4o, = .(4.13
an a 2 {8(0427042)}(1/2) a9 1oy {8(2061 +042,2061 +042)}(1/2) ( )

Applying this to the Cartan subalgelnaof Af), we obtain

hO = _ha27
hl = _(2hoz1 + ha2)7
and he = —hps (4.14)

With respect to this Cartan- subalgebra, the set of positive roots is given by

o, —a,, — (o + a,), — (20, + o), a, £ nd, —a, +2n0,
AT =< —(20, +a,) £ 208, —(a, + a,) +nd, . (4.15)
3(—a, £ (2n — 1)), 5(—(2a, + a,) £ (2n — 1)5)

The setsAT andA™ can be written as

AT =AT/AT (4.16)
and AT = {—nd}. (4.17)
Now Choose the fundamental root system
U = {A1, A2}, (4.18)
where
1
A = 5((5 - (20, + a,)), o (4.19)
and Ao = a,. (4.20)

It follows that \; is the restriction o (5 — (2o, + «,)), o, and ), is the restriction ofy,. So
that using these in egn. (4.15), we can write

(1 £4n)\ £ nAg, (—1 £ 2n) g = 8nAy, (—2 £ 8n)\;
Xp = +(—1£2n)Ao, (-1 E£4n)A1 + (=1 £ n)Ag,
L(=14 (20— 1)Ag £4(2n — D], S[(=2 £ 4((2n — 1)A1 + (=1 % (20 — 1)) \s]
(4.21)
Since dimA = m = 2, there are four conjugacy classes of parabolic subalgebras, namely the
minimal parabolic subalgebrg,itself and two others which will now be constructed.
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Case (I)— Now, Choose the non-empty proper sulgsef ¥ as
0 = {2}
ThenV Ay has generatak,, with
o =20, +a,.
SoAy has generatafe, + e_,) with
a=2q, +a,.
Now asfly, = hy, = ha,, SOA(#) has generator
i(ea, t+€-a,)-
Moreover, agf)_ = {\;} N_(0) is generated by
V_leCY2 = %(ea2 +e—a,) = zha .
Then, agf), = {—X2}. SON_(0) is generated by
V_le_a2 = —%(6% +e—a,) = %hQQ.

andNjy is generated by

_ ) 1 ) 7
v 1ea1 = _5141 e—al—oc2 + 560‘1 - §B1 e—al - 501 ea1+a27
where
A = Sgn(N2al+a2,fa1 7a2)7
Bl = Sgn(Nal’a2 N2a1+a21_a1)7
and C1 = Sgn(Na, a,)
_ 1 7 ) 1
14 167(a1+a2) = 56_0‘1_0‘2 - 5 Az eq — §B2 €—a, — 5 Co Ca,+ays
where
A2 = Sgn<N2al+a2,—a1 —042);
B2 = Sgn(NQQ,—al —042)7

and Cy = Sgn(NOAQ,*alf% N2a1+a2,fal)'

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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V%le sa,—a, = €2, -a,- (4.32)
. 1 iy
Vv ealﬂ:né = iealﬂ:mS - § 3 e—al —a, E£né
1 1
_§B3 ea1+a2in6 - 503 efalim% (433)
where
A3 = Sgn(N—al —a,£né, 2o¢1+a2>7
B3 = Sgn(Na2, aQiné);
and C3 = Sgn<Na2, a; £né N2a1+a2,—al:|:n5)- (434)
v! _ ! Ly (4.35)
e—a2:|:2m5 - 217e—o¢2:|:2n5 - 217 4 €£2n4, .
where
A4 - Sgn(NOzQ,—aZ:t2n§)- (436)
_ )
Vv 167(2a1+a2)i2n6 = 21767(2a1+a2)i2n5 - 21?"45 €+2n6> (437)
where
As = Sgn(N2a1+a2,—(2a1+a2):t2n5)' (438)
_ 1 i
14 16—(a1+cx2):|:n5 = Qe—al—a2:|:n5 - 5*’46 €a, £né
1 1
_536 efaliné - 5066041+a2in67 (439)
where
AG = Sgn(N2a1+a2,falfa2:tn6)7
Bg = Sgn(Na2,—a1—a2:tn6)a
and C’6 = Sgn(Noz2,—a1—a2:tn5 N2a1+a2,—041 —a2:|:n6)- (440)
v -
Cl{—(a)x@n—-1)5} T 51/, “4{—(a,)+(2n—1)5}
1
_217147 eé(aQ)i%(anl)(S? (441)
where
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1
71 .
v C3{—Qa, +a,)+@n—1)} T 51/, €3{~(2a; +a,)*(2n—1)5}

i

91 /s As €-1(2a,+a,)+i(2n-1)8
where
AS = Sgn (N2a1+a2,—%(2a1+o¢2):|:%(2n—1)5> .
It follows that the basis elements W, may be taken to be
1 1
_§A1(6—a1 —a, T €a1+a2) + *(eal - e—al)

2
(3
_531(6_0‘1 - eal) - §Cl(€a1+a2 — € —a2)>
1 /) /)
5(6—041 —ay, T 6041—1—&2) - 5‘42(60‘1 - 6—o¢1) - 532(6_041 - eal)
1
_502(ea1+a2 — €—q, 7012)7 (672(11 —a, T 62a1+a2 )7
)
i(ealims - efalinﬁ) - 5143(67(11 —ayEnd — ealJraQiné)
7
_533(6a1+a2in6 - e—al —a2:tn6)
1
503(6—042:}:715 - 6042:|:n5)7 217(6—041:&715 - ea2:|:n5)
)
3 Ag(etons — ex2ns),

1
91/2 (e—(2a1+a2)ﬂ:2n6 - €(2a1+a2):|:2n5)

)
- 21/2 A5(ei2n5 - €$2n6)7 5(670‘1 —ay,Etnd — ea1+a2in(5) -

1 ]
g A6(€a, 2ns — e—a,+ns) = 5Bs(e—a, 405 — €a, +ns)

1
_506(6041 +a,End — e—al —a, iné)y

1
2'/2 (e%(—%i(%—l)é) o e—%(—%i(zn—m))

(4.43)

(4.44)
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1
—mfh (e%(aQ:l:Qn—l)é) - e—%(aQ:I:(Qn—l)(S)> )

21/ (e%(f(2a1+a2)i(2nfl)6) - 67%(7(2a1+a2)i(2n71)6)>

1
~yia <e*%((2a1+%>i%<2n*1>5) B e%(@aﬁ%)iazm)a)) ) (4.45)
and the basis element bfy may be taken to be

1 1 1 ] .
no, 5( a, ~ 67042) - Qh%a *5( a, — efaQ) - §h,%,z(ea2 + e,%). (4.46)

Sinceh!. NP = Ay, so this parabolic subalgebPg is cuspidal and
Py =My ® Ay DNy (4.47)

Case (II)— Here choose the non-empty proper suldset U, as

0={\}. (4.48)

Then,V Ay has generator
(ha, + h2a, +a,)- (4.49)

So that4y has generator
i(€a, +€-a,) T (€20, +a, +€_ 0 tay)) (4.50)

ASQx, = ha, = %hgaﬁ% — %h%, so that the generator &) may be taken to be,

A(Q) = {i(€(2a1+a2) + e—(2a1+a2)) — i(€a2 — €,a2)}. (451)
Moreover, agf)_ = {—\;}, SON_(6) is generated by

_ 1 1 1 1
V lefoz1 = iefal - 5149 Cay+a, — 539 C—a;—a, — 5096041’ (4.52)

where
A9 = Sgn(N—a1,2a1+o¢2)a
BQ = Sgn(NaQ,—al—a2)7
and Cy = kSYan(N%’,%,O,2 N2a1+a27,a1,a2). (4.53)

and as{#), = {\}, SON_(0) is generated byf—leoz1 which is as mentioned in eq. (4.28) aNg
is generated by elements; 'e_,, , V—le,(aﬁ%), V‘le,(gaﬁ%), V—lealim;, V—le,azﬂn(g,

-1 -1 _
4 6—(a1+o¢2):tn57v e%(_a2i(2n_1)5)7v 16%[—(2a1+a2):|:(2n—1)6]' (4.54)
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All of which are already mentioned in eq. (4.27), eq. (4.29—-4.44) as in case ().

Preceding in the same way as in Case-I the elemernity ahdMy may be generated.

Clearlynd, i(62a1+a2 - 6—(2a1+a2)) +i(€a2 —C—q, )a (67041 —€aq, )) _iA9(€al+a2 —C—(a,+ay, )
_iB9(e—(a1+a2) - €a1+a2) - 09(6(11 - 6—041)’ (eozl - e—ozl) — 1A (e—(a1+a2) - e(al—i-az))

iBl(e_al — eal) — Cl(€a1+a2 — e_al_%) are generators of a real Z-invariant Cartan-subalgebra
h!. for whichh!. " P = Ay. So this parabolic subalgebra is also cuspidal and

Pg = Mg & Ay & Np. (4.55)

IV. CONCLUSION

We have presented the Langlands decomposition of lower rank affine Kac-Moody algkf;ﬁras
(untwisted) and4§12) (twisted) in detail. Use of Satake diagrams facilitates lwasawa decomposition,
which in turn leads to Langland decomposition. The minimal parabolic subalgebra being cuspidal
leads to an induced representation. The Satake diagrams can be studied in a different angle alto-
gether. They can be used to classify the real forms of affine Kac-Moody algebras and automatically
give the Dynkin diagram of reduced root system, which are nothing but Dynkin diagrams of the
associated symmetric space (if it can be defined for a infinite dimensional algebra). Such studies
are currently in progress.
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